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ABSTRACT

Analytical expressions for patched-conic trajectories
are derived, thus providing the analyst with a tool for the
calculaticn of spacecraft trajectories between two bodies and
for understanding the behavior of these trajectories as the mis-
sion constraints are varied. Two sets of equations are developed
which allow an analytical solution to spacecraft trajectories
between two large central bodies and which satisfy boundary con-
ditions at both bodies. The derivations of these equation sets
are based on patched-conic analysis. The independent parameters
required are the spacecraft angular momentum and inclination
with respect to the more massive body, and the spacecraft angular
momentum, energy, and inclination with respect to the less mas-
sive body, or equivalent quantities. These equation sets provide
a good approximation to the sphere of influence trajectory patch
point over essentially the entire range of possible trajectories.
Having obtained the patch point, the spacecraft state vectov is
easily obtained.
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1.0 INTRODUCTION

The study of spacecraft trajectories between two
bodies does not yield to mathematical analysis as well as
trajectories about a single body. <Consequently, the under-
standing of such trajectories has been difficult and, to
an extent, intuitive. This memorandum provides a major
simplification in the analysis of such trajectories.

The analysis contained here is based on the patched-
conic approximation to trajectories between two large central
bodies. In Reference 1, the author carried out a detailed
analysis of the basic elements of the trajectory patch point
locus on the sphere of influence. These elements were iden-
tified and described on a geometrical basis. Using the
geometrical insights gained in Reference 1, equations are
derived in this memorandum which predict the location of the
patch point using trajectory parameters from both inside and
outside the sphere of influence. Once the patch point is
located, the trajectory state vector can be easily calculated,
and hence the spacecraft position may be found for any time.
The trajectory parameters required by the patch point equa-
tions can be thought of as being the elements of the trajec-
tory. There are six such elements, just as there are six
elements of a trajectory about a single body. Since the
parameters describe features both inside and outside the
sphere of influence, obtaining a trajectory with desired
characteristics is considerably simplified.

Two equation sets are. derived. One set is valid
over essentially the entire regime of possible trajectories.
The other equation set is valid only for trajectories at the
high energy end of the trajectory regime; however, this set
is considerably simpler than the set with general validity.

The basic elements of the sphere of influence
patch point locus will be discussed first without proof.
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The patch point equation sets will then be derived and the
necessary proofs supplied. Finally, the validity of the
analysis will be illustrated numerically, and some useful
techniques and approximations will be presented. The patched-
conic equation sets are restated in Appendix B for easy
reference.

Several terms which are used frequently in the
analysis bear some explanation. The two large central bodies
are referred to as the major body and the minor body, the
major body being the more massive of the two. The sphere of
influence is a spherical region surrounding the minor body
within which only the mianor body's gravitational field is
assumed to operate. All the rest of space is assumed to be
influenced conly by the major body's gravitational field.
Trajectories are named descriptively. Thus, a rectilinear
trajectory is one which rises and/or descends vertically with
respect to its central body, i.e., the spacecraft position and
velocity vectors are colinear. A dual rectilinear trajectory
passes between the major and minor bodies and consists of
rectilinear trajectory segments centered at each body. A
single rectilinear trajectory again passes between the two
bodies but has only one body-centered segment which is rec-
tilinear. A non-rectilinear trajectory is one such that
neither of its body-centered portions 1s rectilinear. A re-
statement of these definitions, as well as a list of symbols
used, is contained in Appendix A for easy reference.

2.0 STRUCTURE OF THE SPHERE OF INFLUENCE PATCH POINT LOCUS

The sphere of influence patch point locus for non-
rectilinear trajectories can be constructed from the dual and
single rectilinear trajectory patch point lo:i with the same
energy. Figure 1 shows the dual and single rectilinear tra-
jectory patch point loci for trajectories with identical minor
body referenced energies.

It is seen from Figure 1 that the dual rectilinear
patch point locus (C) is a single point lying on the intersec-
tion of the sphere of influence and the minor body orkital
plane. The major-body-centered and minor-body-centered
single-rectilinear trajectory loci (A and B) are closed curves
containing the dual rectilinear patch point. Each point of the
single rectilinear trajectory loci (e.g., A and B) represents
a different trajectory plane orientation. The sizes of the
single rectilinear loci are dependent on the angular momenta
of the non-rectilinear trajectory segments. Angular momentum
is, in turn, relaced to pericenter radius. Note that the
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trajectory planes for single rectilinear trajectories pa:.
through the dual rectilinear patch point. That is, the node
line between the spacecraft trajectory plane and the minor
body orbital plane is the path of a dual rectilinear trajec-
tory with the same minor body referenced energy.

Figure 2 shows the patch point locus for non-
rectilinear trajectories. It will be shown that this locus
can be constructed as follows:

1. Calculate the dual and single rectilinear trajectory
patch point loci (A, B, and C) for the desired
trajectory energy and angular momenta as shown in
Figure 1.

2, Select the minor-body-centered single-rectilinear
patch point (B) representing the major-body-
centered trajectory plane desired.

3. Transpose the major-body-centered single-rectilinear
patch point locus (A) to A' so that the interior
point originally coinciding with the dual rectilinear
patch point (C) now coincides with the point B
selected in Step 2.

Each point of the locus created in Step 3 is a good
approximation to the patch point for a non-rectilinear trajec-
tory with a given minor-body-centered piane orientation, the
major body plane orientation used in Step 2, and the angular
momenta and energy used in Step 1. In other words, the dis-
placement of the patch point caused by going from a dual recti-
linear trajectory to a major-body-centered single-rectilinear
trajectory is essentially identical, in magnitude and direction,
to the patch point displacement caused by going from a minor-
body-centered single-rectilinear trajectory to a non-rectilinear
trajectory. Note that this also implies that the minor-body-
centered plane passes through the minor-body-centered single~-
rectilinear patch point.

3.0 SPHERE OF INFLUENCE PATCH POINT EQUATION DERIVATION

3.1 Coordinate Systems

In the following analyses, two coordinate systems
are used, one centered at each body. The orbital plane of the
minor body is taken as the reference (xy) plane of both systems.
The line joining the major and minor bodies at the time the
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spacecraft crosses the sphere of influence is taken as the x
axis for both coordinate systems. The positive x direction is
taken as toward the body not at the system center. Thus, the
major-body-centered positive x axis points toward the minor
body and, conversely, the minor-body-centered positive x axis
points toward the major body. For both coordinate systems,

the positive z axis points in the same direction as the angular
momentum vector of the minor body in its orbit around the major
body. The positive y axis completes the right-handed triad.
The transformation relationships between these systems are:

x.)

X) T 7%,
Yy = -y, > (1)
21 = +22

7

3.2 Dual Rectilinear Trajectory Patch Point

Figure 3 shows the trajectory geometry required for
dual rectilinear trajectories. From the geometry of the figure,
the minor-body-centered state vector at the sphere of influence
is

pom

COSADRTCOSBDRT

->
Rl = R1 sznADRTcoseDRT (2)

sinBppq
b

and, since ﬁl and 61 are colinear,

r~ -

CO8ApemCOSBhem
-
Vl = 'lk sinxDRTcosBDRT (3)

SinBDRT
koo -
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where k determines the direction of Vl and obeys the following
rules:

k = +1 for trajectories from the minor body to the
major body.
k = -1 for trajectories from the major body to the

minor body.

The major~-body-centered state vector at the sphere of influence
is obtained from the vector sums

> > »>
R2 = Rl + Ro (4)

and
> > &>

where il and 61 must be transformed to the major body coordinate

system using Eqn. (l1). The state vector of the minor body
referenced to the major body is given by

->
R =R | O (6)

and

-cosy,

<+

= V, | +sing (7
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In order to obtain a major-body-centéred rectilinear trajec-
tory, the angular momentum with respect to the major body must

be equal to zero, that is

-> -+
R2 x V2 = 0. (8)
Writing Eqn. (8) in terms of Eqns. (2) through (7),

r
-RlvoslneDRTsin¢o

.(Rlvocos¢o + Rovlk) sineDRT -0 9

Rovosin¢° - RlvosinoocosxDRTcosSDRT

- (Rlvocos¢o + RV k) sinADRTcosaDRT

Setting the first and second components of the angular
momentum equal to zero yields*

sinBDRT = 0. (10)

That is, dual rectilinear trajectories must lie in the orbital
plane of the minor body.

Setting the third component of angular momentum equal
to zero (and setting cosBDRT = 1)

(Rlvocoso° + Rovlk)sinXDRT + RlvolinQOGOtXDRm - R°V°l1n¢° =« 0. (11)

*An alternative solution is
sinoo = 0

and RV,
Vik = m g comg

However, this solution is of academic interest only, since

it corresponds to a rectilinear trajectory of the minor

body with respect to the major body.
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Equation (11) has the form

Asina + Bcosa + C =0 (12)

which can easily be solved, yielding

1
'Vlz 2 2
sing = —AC*B 2 + g c . (13)

A + B

We now have the equations of the dual rectilinear
trajectory patch point:

\
sinBDRT =0
and
> (14)
|
sina _ =AC:B A2 + p? - 2
DRT A2 + BZ
7
where
A= Rlvocos¢O + Rovlk
B = R1V051n¢o
C = ~R V_sing .
Thus, BpRT is constant (0°) and ADRT is a function of Vlk only.

Due to the sign ambiguity on the radical, the ADRT
equation yields two solutions except when

c? =32 + p? (15)

E3
EA
2
&
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It can be shown from purely geometrical considerations that
Egn. (15) is the condition for a major-body-centered trajec-
tory which is tangent to the sphere of influence. Since it

is not possible to have C2 < A2 + B2 without introducing

imaginary values in the A\pRm equation, Egn. (15) also imposes
a lower limit on the value of Vl' Solving Egn. (15) for Vl'

v. = - Rlvocos¢O + 1/395 - Rl2 V051n¢°

1 RO

(16)

Equation (16) represents the minimum energy for a dual recti-
linear trajectory, and

i = - A
sinppm = o (17)

is the patch point for the minimum energy trajectory. For
trajectories with energies greater than that given by Egqn. (16),
two values of ADRT exist, reoresenting trajectories piercing

the sphere of influence on either side of the tangent trajectory.
Thus, the trajectories are grouped by

(a) ApRT < sin™t (- E:A')
or (18)
(b) Apgp > Sin L (- %)

The sign operating on the radical is minus for case (a) and
plus for case (b). ippp lies in the first or second quadrant

for k = +1 and in the third or fourth quadrant for k = -1.

3.3 Major-Body-Centered Single-Rectilinear Trajectory Patch
Point Locus

Figure 4 shows the trajectory geometry required for
majcr-body-centered single~-rectilinear trajectories. From the
geometry of the figure, the minor-body-centered state vector
at the sphere of influence is

Pl
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= n
CO8QgRm1COSYgppy + SiNQgpmycosi,siny om;
+ 3 . I3
R, = R, S1NQgpn)COSYgRpy ~ COSRgRm€OSiySinygpm, (19)
sini,siny
1T YsRT 3
p> “
(-cos¢,) (cOSQgpm1COSYgpmy + $inQgpmyCOSi Sinygpmy )
+ (51n¢1)(COSQSRT151nySRTl - 51nnSRT1c0511cosYSRT1)
V., =V

1 (-cos¢1)(sin9

+ (51n¢1)(51naSRT151nySRTl + cosgSRTlc081lcosYSRTﬁ

- cos¢lsinilsinySRT1 - sin¢lsini1cosYSRT1

L -

At this point the definitions used for inclination and
node line require clarification. Three things are required to
define the trajectory plane orientation: the angle between the
trajectory plane and the reference plane (inclination), the loca-
tion of a node, and whether this node is the ascending or de-
scending node. The standard procedure is to select the ascending
node and measure inclination as positive. However, it is conven-
ient here to use the node line nearest the pierce point and assign
an algebraic sign to the inclination to show whether this node is
ascending or descending. The convention chosen is that a positive
inclination should produce a positive patch point latitude for
trajectories from the minor body to the major body. This conven-
tion requires il to be positive if the nearest node is descending,

and negative if it is ascending. The symbol @ is used to denote
the longitude of the nearest node rather than its conventional use
denoting the longitude of the ascending node.

Returning to the analysis, in order to obtain a major-
body-centered rectilinear trajectory, the angular momentum must
equal zero, that is

-’
RZ x V2 = 0.

SRT1S°SYgRrr1 = cosnSRTlc051151nySRTl) (20)

(21)

4r a5 4 4k
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Rewriting Eqn. (21) in terms of Eqns. (4) through (7) anad

Eqgns.

equal

which

terms

small

has a
a low

R1V151nQSRTls1n11s1n¢l - R1Y051n1151nySRT151n¢0

- J
R.L\ cosQ

(19) and (20) yields

1 SRT151n1151n¢1 - R1V051n1151nySRT1cos¢o

+ Rovl(sz.nllslnYSRTlcos¢1 + 51n11c05ySRTIS1n¢1

Rlvlcosilsind:1 (22)

+ RlVo[(sz.rwo)(—cosnSR,rlcosYSRTl - 51nQSRT1c081ls1nySRT1)

+ (c°s¢o) (-SanSRTlcoSYSRTl + COSQSRT1C0811SlnYSRT1)]

+ Ron[(cos¢l)(+sanSRTlcosySRTl - COSQSRT10081131nySRT1)

- (sin¢;) (sinfgpn Sinvgpyy + COSRgpmy COSi,COSYgpmy )]

=0

Setting the first component of the angular momentum
to zero

Vlsin¢

SinYgrr1 = V_sine, sinQgpm ¢ (23)

gives the patch point locus displacement from QSRTl in
of Qgpmy* Note that vgpm is not a function of 11.

Now, assuming the mincr body pericenter radius is
compared to the sphere of influence radius, then sin¢1

small value. If the minor body orbits the major body in
eccentricity orbit, sin¢° will be approximately one.
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Then, since Vo and vV, are typically of the same order of
magnitude, and since ¢, grows smaller as V1 grows larger,
Eqn. (23) shows YSRT1 to be a small angle. We may then
make the approximations

cosé, ¥ -k (24)

and

COSYgpmy ~ol. (25)

Using these approximations and Eqn. (23), and setting
the second component of angular momentum equal to zero, yields

(Rlvocos¢o + Rovlk) sinQ + RlVosln¢°cosQ - RbV051n¢o = 0. (26)

SRT1 SRT1

Equation (26) is identical to the dual rectilinear patch-point
equation, Eqn. (ll). Consequently,

LY (27)

f5RrT1 DRT®

Thus, it has been shown that the node line of a major-body-
centered single-rectilinear trajectory is closely approximated
by the path of the associated dual rectilinear trajectory.
Note that this also implies that major-body-centered single-
rectilinear trajectories do not exist for energies below the
minimum dual rectilinear trajectory energy of Eqn. (16).

From basic spherical trigonometry relations,

sinesRTl = sinilsinySRTl (28)

and

tanAASRTl = cosiltanysRTl (29)
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where & is the longitudinal distance from

*SRT1 srr1 to the
single rectilinear trajectory patch point. Note that while

]
il is the trajectory plane inclination for major-body-centered
single-rectilinear trajectories (and hence identical to il),

this is no longer true when the locus is transposed to form the
non-rectilinear locus, and a more general definition is required.
1)

The general definition of i1 is the angle between the minor-body-

centered trajectory plane and the plane containing the radius
vector to the center of the YSrT1 locus and whose line of nodes

with the reference plane is perpendicular to this radius vector.

Summarizing the equations for the major-body-centered
single-rectilinear patch point,

' ~
SlnBSRTl = SlnllSlnYSRTl
and $ (30)
*srr1 = *prr * 2’srr1
J
where
L
tanMSRT1 = c0511tanYSRT1
and
Vlsin¢l
SiMVsrr1 = T_sine, SinAppe

and \DRT is found from Eqn. (14). Note that i1 carries a plus

sign for trajectories whose patch point lies above the orbital
plane of the minor body and a minus sign for trajectories whose
patch point lies below the orbital plane of the minor body.

3.4 Minor-Body-Centered Single-Rectilinear Trajectory Patch
Point Locus

Figure 5 shows the trajectory geometry required for
minor-body-centered single-rectilinear trajectories. Note that
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the state vector is defined using the patch point coordinates,
since there is no defined minor-body-centered plane. From the
geometry of the figure, the minor-body-centered state vector
at the sphere of influence is

p— ~—

COSAgrr2°C%BgRT2

¥
|

]

o)

1 |8iMAgrp2€O8Bgpr) (31)

SinBgpma

e —

and, since the minor-body-centered radius and velocity vectors
are colinear,

7
EOSASRTZCOSBSRTZ

<+
]

<

~

1 = Vik |sinagpmaCO8Bgprs (32)

sing
" SRT2 4

where k = +1 for trajectories from the minor body to the major
body
k = -1 for trajectories to the minor body from the major

body.

For this case, a non-rectilinear major-body-centered
trajectory is required. Hence,

- -»> -
Ry x v2 = hz’ (33)

The angular momentum vector may be written
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- P
SlanSInQSRTz

2 -sinizcosa (34)

SRT2

cosi
2
- -

Combining Egns. (4) through (7) and Egns. (31) and (34)

-R1V051nSSRT251n¢°

-R1V051nBSRT2cos¢o - RokV151nBSRT

-Rlvo(cosASRTzcosBSRTzsmcpo + sanSRTzcosBSRTzcos¢o)

-RokVISLnASRTzcosBSRT2 + ROV031n¢°

pe -

51n1251nQSRT2

= h2 -sinizcosﬂ (35)

SRT2

cosi
L 2 J

From the first component of the angular momentum
equation

h.sini.sing
2 2 SRT2 (36)

sing = -
SRT2 ﬁlvos Ine

From the second component of the angular momentum equation, we
find that
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hzsinizcosnSRTZ

sing = 4+ = . (37)
SRT2 RlVocos¢o + RokVl
Combining Egns. (36) and (37)
R,V _sin¢
10 o
tang = - = — . (38)
SRT2 Rlvocos¢o + RokVl

Note that Qepr2 is independent of either h2 or i,.

MAJOR BODY I MINOR BODY

MAJOR-BODY-CENTERED
NODE LINE

SPHERE OF INFLUENCE

FIGURE 6 — GEOMETRY OF MINOR-BODY-CENTERED SINGLE-RECTILINEAR TRAJECTORY PLANE NODE
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This being so, from Figure 6 one can write

+ (39)

[}
_ o _.
Qgpr2) = R Sinfgprs

sin (QSRTZ 1

provided the node line intersects the sphere of influence.

Combining Egns. (38) and (39)

(RkV) + R,V cos¢ ) sinQgpm, + RV sine cosfgopn, = RV sing, = 0. (40)

Equation (40) is identical to the 2
hence,

DRT equation, Emn. (11);

2srr2 = ‘pRe° (41)

Thus, it has been shown that the node line of a minor-body-
centered single-rectilinear trajectory is the path of the asso-
ciated dual rectilinear trajectory for energies above the minimum
dual rectilinear trajectory energy. However, it is not implied

in the derivation that minor-body-centered single-rectilinear
trajectories do not exist for energies below this value. 1In

fact they do exist for such energies. In these cases, the major-
body-centered node line does not intersect the sphere of influence.

From the third component of the angular momentum
equation

(R kv, + Rlvocos¢°) sinASRTz + Rlvosinoocosxsm.2

(42)
Rovosxnoo - hzcosi2 -0

Again this is an expression of the form
Asing + Bcosq + C = 0

and Eqn. (13) constitutes the solution.
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We now have the equations for the miaor-body-centered
single-rectilinear patch point,

3

. _ hzslnlzsanSRT2
Singgpr2 = RV sing,
R,V _sing
- - lo o
tanfepra = T RyV _cose, * R_KV; } (43)
. _ _AC :+ B /a2 + B2 - ¢?
S1MAgpr2 = 22 5 B2
J

where
A= Rokvl + Rlvocos¢o

B = R,V sin¢

T Hed i Mok AB et ¢ e

ROV°s1n¢o - h2c0512

€= COSBgpr2

Nt e

The angle ASRT?2 lies in the first or second quadrant for k = +1

and in the third or fourth quadrant for k = -1. The convention
that a ‘nsitive inclination produces a positive patch point lati-
tude f... .ainor body to major body trajectories requires a posi-
tive i2 if the nearest node is ascending and negative i2 if it

is descending.
Because of the radical in the ASRT2 equation,

a2 + B2 -c? =0 (44)

represents a limit on minor-body-centered single-rectilinear
trajectories. sSolving Eqn. (44) ‘or V,

o~ h2c09122 2

-kR,V cos¢ + CETTp— - (Rlvosin¢o)
Vv = —— (45)
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Eguation (45) imposes a lower limit on the energy of minor-
body-centered single-rectilinear trajectories and

: _ _A
cildgpms = = B (46)

is the patch point for the minimum energy trajectory.

As before, two solutions exist for 2 for energy

SRT2
levels above that given in Egn. (45). Both solutions are valid
and are grouped by:

N
(a) *srr2 Si“—ll—%ﬂ
or ? (47)
(b) Aspr2 sin”! (-3
J

The sign operating on the radical in the ) equation is minus

SRT2
for case (a) and plus for case (b).

3.5 Non-Rectilinear Trajectory Patch Point Equations (High
Energy Set)

It was stated at the beginning of the analysis that
the non-rectilinear patch point locus can be obtained by
properly combining the dual and single rectilinear patch point
loci. Equations for these loci have now been derived, so the
general locus may now be constructed. Specifically, the major-
body-centered single-rectilinear patch point locus is to be
transposed so that the interior point originally coinciding
with the dual rectilinear patch point now lies on the minor-
body-centered single-rectilinear trajectory patch point.

That is,

\

BNRT 8srr2 * BsrT1

and ? (48)

NRT = *smrr2 * MSRTlJ

e v
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where the values for BSRTl' 8 1 and 2 are found

srT2’ “*srr SRT2
from Egns. (30) and (43). The value of ii'used in Egn. (30)
must be cotained using the definition of il give? in Section
3.3. Spherical trigonometry easily shows that i1 may be ob-

tained from the true inclination, il' by the relationship

' cosil
cos i, = (49)
1 cosBSRTl
An alternative method for determining BNRT and ANRT

is to calculate the angular distance from the minor-body-
centered node line to the minor-body-centered single-rectilinear
trajectory patch point and add YSRrT1 to this. The non-

rectilinear patch point coordinates may then be calculated
using this sum and il' The resulting equations are

SlnBNRT 51n1151n

sinsg
. -1 SRT2
Ygrrl T Sin (_'_"'_

Slnll
and (50)
tang tang
_ . =1 SRT2| _ _. -1 NRT
ANRT = *srr2 * Sin ( Tani, sin ( tanil)

While the two formulations give slightly different
results, there does not appear to be any advantage of one over

the other. Therefore, the slightly simpler Egns. (48) are used
here.

For reference purposes, Egqns. (48) will be called the
high energy equation set. The reason for this selection will
become apparent.

The independent parameters in the high energy equa-
tion set are:
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minor-body-centered

inclination (il)
velocity at the sphere of influence (Vl)
trajectory flight path angle (¢1)

major-body-centered

angular momentum (h2)
inclination (iz).

The five independent parameters and the time of piercing the
sphere of influence may be considered the elements of the
trajectory, just as there are five elements to Keplerian tra-
jectories which, along with the time of pericenter passage,
determine two body trajectories.

The elements V1 and ¢1 may, if desired, be restated

in terms of other parameters using the conic equations. For

example,
2 2 1
ViTwn (‘ﬁ'l' + a‘l) (51)

2

sin2¢l R . (52)

obtains V, and ¢, from the semi-major axis and the radius of
pericenter for the minor body. Means of obtaining h, are dis-
cussed in Appendix C. The parameters R, Vo' and ¢, are obtained
from the minor body ephemeris and are calculated at the time

the spacecraft pierces the sphere of influence.

The results of a sample trajectory problem are
presented to illustrate the validity of the concepts developed

(%3
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so far. Consider a trajectory from the Moon to the Earth, such
as a return from an Apolloc mission. The selenocentric parameters
selected are:

periselene altitude 60 n. mi.
inclination 160°
semi-major axis 8 x 106 feet

and the geocentric parameters are:

inclination 30°

11

angular momentum 7.7 x 10 ftz/sec.

The radius of the Moon's sphere of influence is taken as

1.8 x 108 feet. The Moon is assumed to be at apogee, a dis-
tance of 13.34 x 108 feet from the Earth. Using standard conic
orbit equations

v

1 4854.4 ft/sec

and

4, = 176.468°.

The equation set gives the patch point coordinates as

BNRT = 4.493°

A = 30.803°.

NRT

Solving the same problem with a standard patched conic analysis,
the patch point coordinates are found to be

4.424°

BNRT

30.894°

ANRT

which agree well with the equation set calculated coordinates.
Further demonstration of the validity of this equation set will
be provided in Section 4.0.
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As pointed out earlier, there is a lower limit on the
energy of major-body-centered single-rectilinear trajectories
and, consequently, on the energy for which this equation set
will produce a solution. However, non-existence of these solu-
tions does not mean that non-rectilinear trajectories do not
exist at energies below this level. 1Indeed, many trajectories
of interest do exist with energy levels below the minimum
energy of major-body-centered single-rectilinear trajectories.

3.6 Non-Rectilinear Trajectory Patch Point Equations (General Set)

The energy limitation on the high energy equation set
can be circumvented by eliminating the major-body-centered
single~-rectilinear trajectory patch point locus and deriving
a new locus referenced to the minor-body-centered single-
rectilinear trajectory patch point. Specifically, by assuming
that the minor-body-centered trajectory plane passes through
the minor-body-centered single-rectilinear trajectory patch
point, it is possible to find an explicit statement for the
patch point coordinates of a non-rectilinear trajectory. Since
we already have the equations of the minor-body-centered single-
rectilinear patch point locus, we need only obtain one more
equation set. Figure 7 shows the trajectory geometry required
for non-rectilinear trajectories. From the geometry of the
figure, the minor-body-centered state vector at the sphere of
influence can be written as

, 7]

cos (coss - 51nBSRT251n1151nyNRT)

SRT2°°SYNRT

COSllSlnYNRT

' SRT2

+ SlnXSRTz

(COSBSRT2COSYNRT - SInBSRTZSlnllSlnYNRT) (53)

'
COSllSlnYNRT

SRT2

= COSAgpr2

SlnESRT2COSYNRT + cosSSRT251nllslnYNRT

L d

e 4 e
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1
RT 51n£SRT251n1151nyNRT)
1)

+ Sln\SPTZCOSlISln‘NRT] (-cos¢l)

[cos 2(cos;, cosyy

SRT SRT2

+ ICOSXSRTZ(COSESRTZSInYNRT + SlanRTzslnllcosYNRT)

]
- 51nASRT2c0511c05yNRT] (51n¢1)

[}
SRT2CCSYNRT ~ SiPBgpppsiniysinyypn)
]

cosilsiny

[sin) (cost

SRT2

= COS)gpro Nrr) (-coséy)

+ [sinx

SRT srr25iDYygy * SinBgpp,ysini)cosyygpy)
]
+ COSASRTZCOSIICOSYNRT] (51n¢1)

2(cosB

1
[81nBSRT2C°s”NRT + COSDSRTZSln1151nYNRT] (-cos¢l)
L}

+ [SlnBSRTZSlnYNRT - cosBSRT251n11c05yNRT] (51n¢1)

- -

where, from Figure 7,

K cosil
c0511 = EBEE;;;;
For this case, we must have
N > <>
RZ X Vz = hz.

The major-body-centered angular momentum vector may be written

SlanSanNRTz

h2 = h2 -s;nlzcosn

NRTZ2

c N
0812

(54)

(55)

(56)

(57)

s =
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The minor-body-centered angular momentum vector,
expressed in the major body coordinate system, is

r N
-sini,sinQuom,
Ry x V, = h1 +sini,cosfpm, (58)
cosil
Y -
The angle Qg1 MaY be calculated from the minor-body-

centered single-rectilinear patch point as follows:

tanB
_ -l SRT2
NRT1 = *sRrr2 T S ( €ani, "') (59)

Combining Eqns. (4) through (7) and Eqns. (53) through (58)
yields
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Eguation set (60) provides three equations with the
unknown quantities YNRT and QRT2°

The third component of equation set (60) is a func-

tion of YNRT only. Moreover, it may be written in the form

ASlnYNRT + BcosyNRT + C = 0. (61)

Then Y NRT is found, from Egn. (13), to be

2, .2 _ .2
_ -AC ¢ B'}[A + B - ¢ (62)

A" + 82

sinyypp

where

]
c0511)

>
[

1
RIVG[(51n¢°)(cosA sing sini, - 91nASRT2

cosil)]

SRT2
[}
sini1 + cos)

SRT2

+ (cos¢o)(sinx sing

SRT2 SRT2 SRT2

+ Rovlusin¢l)(-sinASRTzcosBSRTz)

[
+ (cos¢1)(-31nASRTzsinBSRT251nil - cosxSRTzcosil)]

B = Rlvo{-sin¢ocosASRT2COSBSRT2 - cos¢°sinASRT2cosBSRT2]
L

[ ]
+ Rovll(sinol)(-sinl sing sini1 - cosASRTzsosil)

SRT2 SRT2

+ cosélsinASRTzcossngzl

0
I

= hlcosi1 - hzcosi2 + Rovosino°

and from Egn. (55)

i. cosi1
1~ cosBgpmy
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The quantity hl is found from
h1 = Rlvlsinol.
L
In these equations il and i1 are signed according to the rule:

]
il and i1 are positive if the nearest node is descending,
)

i1 and il are negative if the nearest node is ascending.

Equation (62) provides two pairs of values of YNRT' the

principal value and its supplement, for each choice of the sign on
the radical. However, the supplementary values can be eliminated
on geometrical grounds, since values of YNRT in excess of “0°

would place the patch point in the wrong hemisphere. Selection
of the correct value of YNRT from the two principal value s:i:lu-

tions presents a more difficult problem. Figure 8 shows the
variai! u of YNRT with i1 for a typical set of ay ., hl' i2 and h2

values in the Earth-Moon system. Values for sind and cosf

NRT= NRT2
are obtained from the first and second components of eguation set
(60). Figqure 9 shows the variation of the root sum square of the

sine and cosine for the same parameter set used in Figure §. It
is seen that, for almost every value of il' only one value n€

"NRT satisfies the complete equaticn set, that is, only one value

of “nrr
the sine and cosine of ¢

yields a value of 1 for the root sum of the squares or

NRT2°

However, Figure 8 shows two regions of il values for
which no YNRT value is available, while Figure 9 shows six dis-
crete points for which both values of YNRT satisfy the equation

set. The second of these difficulties will be dealt with first.

For a given set of a, iz, and h2 values, there are

four possible minor-bodied-centered single-rectilinear patch
points. These are shown in Figure 10. Tney are distinguished
by the sign associated with 12 and by the sign chosen on the

AP TR I .
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radical in Eqn. (43) for A gRT2 (see discussi. . following

Egqn. (45)). However, these distinctions are lost in the opera-
tions used to solve equation set (60). Now, three minor-body-

centered planes may be drawn joining the primary (i.e., intended)

and secondary minor-body-centered single~rectilinear patch
points, also shown in Figure 10. When il matches the inclina-

tion of these planes, two values of YNRT 2T€ possible and these

are the two values found by Eqn. (60). There are six points with

double solutions since each of the three planes may be traveled
in either a retrograde or posigrade sense.

The other anomaly in Egn. (62) is the absence of any
value of YNRT for certain values of il’ Specifically, the
radical in Egn. (62) becomes imaginary for these values of il'

This occurs because the equations are based on the assumption
that the minor-body-centered plane passes through the minor-
body-centered single-rectilinear patch point. While this is a
good approximation, it is not strictly true. As a result, in
the region where the radical should be nearly zero, it becomes
imaginary for a small range of il values.

We now have, with the exceptions noted, a unique

solution for Y~IRT * Using basic spherical trigonometry
relationships,

sinagypm = Sini;sinygon (63)

and

tanaiypp = €0sijtanyyon. (64)

The non-rectilinear patch point coordinates are then

BNRT = Bsrr2 t 2BNRT

and } (65)

ANRT = *srT2 ~ “xsuwr'”J

% a0 doh e
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As in the high energy equation set, an alternative
formulation for the non-rectilinear patch point may be obtained
by calculating the angular distance from the minor-body-centered
node line to the minor-body-centered, single-rectilinear patch
point, adding to this Y NRT and then calculating the non-

rectilinear patch point coordinates using this sum and il' The
resulting equations are

\
sing
. o s . Lo=1 SRT2
sanNRT = 51n1151n YNRT + sin (_EIHII__)
and P (66)
tang tang
_ =1 SRT2| _ _..-1 NRT
‘NRT = Agppz * S3in ( tani, ) sin ( tanil )
v

As there seems to be no advantage in accuracy to one formulation
over the other, the simpler Eqgns. (65) are used here.

Figure 11 is a plot of Egns. (65), with the locus for
a formal patched conic trajectory included for comparison. The
loci are in excellent agreement except in the region where Y NRT

does not exist and its immediate neighborhood. In this neighbor-
hood the locus calculated by Egqns. (65) deviates from the for-
mally calculated patched conic locus.

From a practical calculative viewpoint, it is desirable
to prevent the loci from diverging and to obtain a value for
' NRT in the imaginary region. An algorithm is derived to accom-

plish this purpose, based on the following observations. First,
the real locus is nearly symmetrical about a great circle line

of inclination BSRT2 and passing through the minor-body-centered

single-rectilinear trajectory patch point. In fact, for all but
very low energies, it is nearly circular.* At the same time,
when the function generated locus is misbehaving for a given
value of il, it is usually well behaved for -il. Thus, using

the symmetry of the locus, one may obtain a solution for Y NRT
by changing the sign on il.

*Indeed, the major-body-centered single-rectilinear trajec-
tory locus (Eqn. (23)), used in the high energy equation set to
approximate the non-rectilinear locus, is circular, since it is
centered at the dual rectilinear ratch point and is not a function
of i

l.
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The next problem is deciding when the function is
misbehaving. This always occurs when Az + B2 - C2 is small
compared to C2. Thus, cone may make the rule that il is set
equal to -il in Egqn. (73) if A2 + B2 - C2 < eC2 where ¢ is
an empirically derived small number. The author has used
e = .01 with success. However, this rule is not quite adequate,

as the function may yield values of A2 + B2 - C2 < eC2 for both

+i1 and -il; also, it may generate imagirnary values for

ng + B2 - C2 for both il's. These problems can be handled as
follows: if the radical is imaginary for both +i1 > ad -il,

set it equal to zero; if only one value of the rad al is
imaginary, use the value of i1 that yields tihe re¢ answ 7;

and if both values of i1 yield real answers but stiil

A2 + B2 - Cz < sCz, use the il that produces the larger

Stated in algorithmic form, the above rules are:

(A? +8? —C? >eC?)
1

NO YES

USE +i,

2 2 2
(A? +82 - €7 <0} ;.

AND p—e———amd  YES
(a?+8% -c? <o) ‘
‘ USE +i, AND SET
NO Al+B2-C?=0

1

(A2+B2-C%) .. >(A?+B%-C?) _.
+H, —i)

! 1

! R
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Note that the sign of il is changed in Eqn. (62) only. Equa-

tions (63) and (64) use the proper value of il‘

It is now possible to select the proper value of YNRT

from the two solutions of Egqn. (62) without resorting to the
INRT €9quations. Observe from Figures 8 and 9 that the proper

value of YNRT is small compared with the extraneous solution.

The only region where this is violated is the neighborhood of

the imaginary region, but this region has been eliminated by

the above algorithm. Consequently, we may simply state: the
sign on the radical in Eqn. (62) is chosen to obtain the smallest
positive value of YNRT for trajectories from the minor body to

the major body, and the smallest negative value for trajectories
from the major body to the minor body.

Figure 12 presents the same locus shown in Figure 11,
incorporating the corrective algorithm given above. Also shown
is the true patched conic locus. As can be seen, the locus is
prrevented from deviating seriously away from the path of the
real locus.

The difficulties just discussed in the solution of
tgqns. (70) become worse as the energy is decreased. To demon-
strate that the equation set plus algorithm operates satis-
factorily at very low energies, Figure 13 shows the equation
set locus and the true patched conic locus for a low energy
(116 hour) trip to the Moon. Comparison with the true locus
shows the equation set to be producing quite good answers.

Equation (62) is limited in energy range by the minimum
value of the minor-body-centered single-rectilinear trajectory
energy. That is, YNRT Sannot be calculated from Egn. (62) for

energies below the minimum for which a value of i exists,

SRT2
as given in Egn. (45). Do such low energy trajectories exist?

If so, how large is the band of energy missed by Eqn. (62)?

To answer the first question, consider the nature of the deriva-
tion. Only one assumption was made, i.e., the non-rectilinear
trajectory plane centered at the minor body passes through the
minor-body-centered single-rectilinear patch point ‘Bsnrz' ASRTZ)'

If this assumption were strictly true, then the limiting energy
for \gRT2 would also be the limiting energy for non-rectilinear

trajectories. However, this is not the case.
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Observe the case of major-body-centered, single-rectilinear
trajectories. Here the associated value of ASRT2 must be the

dual rectilinear patch point. For this case, it was shown that
the minor-bodv-centered plane passed through the dual recti-
linear patch point, but the proof required certain approxima-
tions; thus, the result is only approximately true. Conse-
quently, non-rectilinear trajectories may exist with energies
below the minimum major-body-centered single-rectilinear
trajectory energy; in fact, such trajectories do exist.

How wide a band of energy is unavailable to Eqn. (62)?
Since the general equation set yields accurate results for quite
low energies as demonstrated by Figure 13, one may argue that
the assumption used must be fairly accurate and thus the missed
energy band is quite narrow. Consider the minimum energy tra-
jectory to the Moon (at apogee) which the general set will cal-
culate. Take as input:

: P [-]

12 = 30

h2 = 7.72 x 1011 ftz/sec

il = 160°
Ry = 6.06698 10% £t (60 n.mi. altitude).

Then the minimwa energy direct trajectory has

a, = 34.8609 x 10% £t

and a trip time of 134 hours. Based on Apollo trajectory studies;
direct trip times noticeably in excess of 134 hours do not exist.

Thus, it is safe to say that the band of trajectory energies
missed by Eqn. (62) is very narrow.

As in the high energy equation set, there are six
trajectory elements, or independent parameters, which deter-
mine the spacecraft trajectory. They are:

minor-body-centered

inclination (i,)

velocity at the sphere of influence (Vl)

trajectory flight path angle (¢,)
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major~-body~centered
inclination (iz)
angular momentum (hz)
and the time of piercing the sphere of influence.

The elements V1 and ¢, may be restated in terms of

other parameters, if desired, using the standard conic rela-
tionships. For example,

2 2 1
\Y =y f—— + —-) (67)
1 1l Rl al
R
Pl
2 RPl(él +‘4
sin ¢y = R (68)
Ei + 2
1

obtains Vi and 41 from the semi-major axis and radius of peri-
center. Means of obtaining h2 are discussed in Appendix C.
Ro' Vo and ¢, are determined from the minor-body ephemeris
and calculated at the time the spacecraft pierces the sphere
of influence.

The general equation set is valid over essentially
the entire regime of possible energies. While there is a limit
on the validity of the Asrr2 equation, it is seen that this is
not significant.

4.0 VALIDITY OF THE PATCH POINT TQUATIONS

In order to demonstrate that the technigues presanted
here are a good approximation to a rigorous patched conic
analysis, a series of trajectory problems have been nolved using
a patched conic analysis, the high energy equation set, and the
general equation set. The results are shown in Tables I through
VI. Each table presents the results for three or four different

i
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TABL: |

COMPARISON OF RESULTS FROM PATCH CONIC ANALYSIS AND THE HIGH ENERGY
AND GENCRAL EQUATION SETS FOR HIGH ENERGY LUNAR TRAJECTORIES

SPHERE OF INFLUENCE MINOR BODY MAJOR BODY
PA'I H POINT PARAMETERS PARAMETERS
PERI- SEMI-
INCLI- ANGULAR| INCLI-
LATITUDE |LONGI NT MAJO
ONGITUDE| CEFTER 1 namon | M7 Imomentum{ naTION
DEGREES | DEGREES | FEET x 10° | DEGREES | FEET x 10° |Fr¥/secx10'!| DEGREES
PATCH CONIC 5.000 26.000 6.0670 52.233 8.3830 7.7694 20.966
HIGH ENERGY EQN. SET 5.027 25.992 6.0670 52,233 8.3830 7.7880 21.149
GENERAL EQN. SET 5.009 25.006 6.0670 52.233 8.3830 7.7681 21.046
PATCH CONIC 5.000 32.000 6.0670 160.012 8.4097 7.7694 34.416
HIGH ENERGY EQN. SET 5.035 31.982 6.0670 160.012 8.4097 7.8069 34.580
GENERAL EQON. SET 5.038 31.991 6.0670 160.012 8.4097 7.8025 34.633
PATCH CONIC 5.000 35.000 6.0670 26.145 6.4180 7.7694 143.303
HIGH ENERGY EQN. SET 4973 35.000 6.0670 26.145 6.4180 7.7506 143512
GENERAL EQN. SET 4970 35.007 6.0670 26.145 6.4180 7.7534 143.666
PATCH CONIC 5.000 40.590 6.0670 134.841 6.4655 7.7694 151.968
HIGH ENERGY EQN. SET 4988 40.491 6.0670 134.841 6.4655 7.7551 152.039
GENERAL EQN. SET 4.990 40493 6.0670 134.841 6.4655 7.7583 152.027

EARTH-MOOM TRAJECTORIES WITH A TRIP TIME GF APPRO.{IMATELY 60 HOURS. THE MOON IS AT
APOGEE. THE TRAJECTORY PERIGEE ALTI1UDE IS 100 N.M, AND PERISELENE ALTITUDE IS 60 N.M.

TABLE N

COMPARISON GF RESULTS FROM PATCH CONIC ANALYSIS AND THE HIGH ENERGY
AND GENERAL EQUATION SETS FOR INTERMEDIATE ENERGY LUNAR TRAJECTORIES

SPHERE OF INFLUENCE MINOR BCDY MAJOR BODY
PATCH POINT PARAMETERS PARAMETERS
PERI- SEMI-
INCLI- ANGULAR] INCLI-
LATIT

Ut |LONGITUDE) CENTER | yamion | MAie” [MOMENTUM{ NATION
QNEE. | DEGREES | FEET x 10° | DEGREES | FEET x 10 [er?/secx10!!| DEGREES
PATCH CONIC + 000 40.000 6.0670 62.493 18.110 7.7373 13.612
HIGH ENERGY EQN. SET 6.139 39.959 5.0670 62.493 18.110 2.788i 14.358
GENERAL £QN. SET 6.043 40.009 6,0670 62.493 18.110 7.7421 13.865
PATCH CONIC 6.000 48.000 6.0670 161.300 18.267 1.73713 29.021
HIGH ENERG'Y EQN. SET 6.096 47.990 6.0670 161.300 18.267 7.7847 29.487
GENERAL EUN. SET 6.095 47.987 6.0670 161.300 18.267 7.7855 29.478
PATCH CONIC 6.000 48.000 6.0670 8.392 11.275 7.7373 127.652
HIGH ENERGY EON. SEY 5.965 47.991 8.0670 8293 11.275 7.71117 127.783
GENERAL EQN. SET 5.967 48.011 6.0670 8.303 11.276 2.7187 127.837
PATCH CONIC 0 54.000 6.0670 84.797 10.860 7.7373 152.674
HIGH ENERGY EQN. SET 0.090 £°.982 6.0670 94.797 10.800 7.7669 162.060
GENERAL EQN. SET 0.047 53.994 6.0670 94,787 10.800 7.7163 162.982

EARTH-MOON TRAJECTORIES WITH A TRIP TIMF OF APPROXIMATELY 80 HOURS. THE MOON iS AT
APOGEE. THE TRAJECTORY PERIGEE ALTITUDE IS 100 N.M. AND PERISELENE ALTITUDE IS 60 N.M.
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TABLE Il

COMPARISON OF RESULTS FROM PATCH CONIC ANALYSIS AND
THE HIGH ENERGY AND GENERAL EQUATICN SETS FOR LOW ENERGY LUNAR TRAJECTORIES

SPHERE OF INFLUENCE MINOR BODY MAJOR BODY
PATCH POINT PARAMETERS PAFAMETERS
PERI- SEMI-
INCLI- ANGULAR |  INCLi-
LATITU T M
DE |LONGITUDE ‘;%,52 NATION &",%R [MOMENTUM] NATION
DEGREES | DEGREES | FEET x 10° | DEGREES | FEET x 10° |[Fr%/secx10"'| DEGREES
PATCH CONIC 8.000 58.500 | 6.0670 44102 | 22935 7.7175 23.119
HIGH ENERGY EQN. SET NO SOLUTION
GENERAL EQON. SET 8.173 58.571 6.0670 44102 | 22935 7.7561 23.879
PATCH CONIC 8.000 74500 | 6.0670 150.324 | 23718 7.7175 31.980
HIGH ENERGY EQN. SET NO SOLUTION
GENERAL EON. SET 8.475 74766 | 6.0670 159.324 | 23.718 7.8933 33.857
PATCH CONIC 8.000 66.000 | 6.0670 25.367 17289 7.7175 135.072
HIGH ENERGY EQN. SET|  7.879 65.880 | 6.0670 25.367 11.389 7.6357 135.554
GENERAL EQN. SET 7.845 65.954 | 6.0670 25.367 11.389 7.6277 135.803
PATCH CONIC 8.000 77.000 | 6.0670 143.992 11.608 7.7175 140.265
HIGH ENERGY EQN. SET|  7.931 77.204 | 6.0670 143.992 11.608 7.7040 140.760
GENERAL EQN. SET 7.882 77135 | 6.0670 143.992 11.608 7.6742 140.982

EARTH-MOON TRAJECTORIES WITH A TRIP TIME OF APPROXIMATELY 90 HOURS. THE MOON iS AT PERIGEE.
THE TRAJECTORY PERIGEE ALTITUDE IS 100 N.M. AND PERISELENE ALTITUDE IS 60 N.M.

TABLE iV

COMPARISON OF RESULTS FROM PATCH CONIC ANALYSIS AND THE
HIGH ENERGY AND GENERAL EQUATION SETS FOR MARS TRAJECTORIES

SPHERE OF INFLUENCE MINOR BODY MAJOR BODY
PATCH POINT PARAMETERS PARAMETERS
PERI- SEMI-
INCLI- ANGULAR | iNCLI-
LATITUDE [ TER MAJOR
LONGITUDE} CENTER | mamion | Mie® [Momentum| naTion
DEGREES | DEGREES | A.U.x 10| DEGREES | A. U.x 107% {A. U)?/DAY| DEGREES
PATCH CONIC 0.300 -40.300 | 2.3463 33.903 19773 4.018903 0.110
HIGH ENERGY EQN. ST NO SOLUTION
GENERAL EON. SET 0.297 -40.146 | 2.3463 33.903 1.9773 0.016903 0.111
PATCH CONIC 2.300 -47.300 | 2.3462 144.943 1.9815 0.018902 0.111
HIGH ENERGY EQN. SET NC SOLUTION
GENERAL EQN. SET 0.293 -41.145 | 2.3463 144.943 1.9815 0.01833 0.110
PATCH CONIC 0.300 40890 | 2.3463 89.663 1.9791 0.018903 0.154
HIGH FNERGY EON. SET}] — NO SOLUTION
GENERAL FON. SET 0.304 -40647 | 23483 | 89633 | 1.9791 0.018903 0.158

EARTH-MARS TRAJECTORIES WiTil A TRIP TIME OF APPROXIMATELY 246 DAYS. MARS IS AT ITS
AVERAGE HELINCENTRIC DISTANCE, THE TRAJECTORY PERIHELION RADIUS IS 1 A, U. AND THE
PERICENTER ALTITUDE AT MARS IS 100 KM

ST

-




H
4

ol 4
s

L o gy

— onun—— ———— —— — pera—amy

- T

COMPARISON OF RESULTS FROM PATCH CONIC ANALYSIS AND

—48 -

TABLE V

THE HIGH ENERGY AND GENERAL EQUATION SETS FOR JUPITER TRAJECTORIES

SPHERE OF INFLUENCE MINOR BODY MAJOR BODY
PATCH POINT PARAMETERS PARAMETERS
{ PERI- SEMI-
INCLI- ANGULAR| INCLI-
L l MAJOR
ATITUDE JLONGITUDE %%T,Sg NATION AXIS OMENTUM| NATION
DEGREES | DEGREES A.U. | DEGREES A.U. |(A.U)?/DAY| DEGREES
PATCH CONIC 0.800 —64.000 | .00465 33.403 | 0.033897 | 0.022370 0.559
HIGH ENERGY EON. SET NO SOLUTION
GENERAL EQN. SET 1.233 —63.861 .00465 33.403 | 0.033897 | 0.022369 0.234
PATCH CONIC 0.800 —74.000 | .00465 134183 | 5.035344 | 0.022370 0.935
HIGH ENERGY EQN. SET NO SOLUTION
GENERAL EQN. SET 1628 -73725 | .00465 134183 | 0.035344 | 0.022367 0.316
PATCH CONIC 1.600 —66.000 00465 60.829 | 0.034210 | 0.022370 0.641
HIGH ENERGY EON. SET NO SOLUTION
GENERAL EQN. SET 2.347 -65.843 | .00465 60.828 | 0.034210 | 0.022369 0.159
PATCH CONIC 0.600 -86.000 | .00465 138.163 | 0.0022498 | 0.022370 | 176.334
HIGH ENERGY EQN. SET| 0.634 -86.402 | .00465 138.163 | 0.0022498 | 0.022300 | 176.242
GENERAL EQN. SET 0.846 -85887 | .00465 138.163 | 0.0022498 | 0.022388 | 175.659

EARTHJJUPITER TRAJECTORIES WITH A TRIP TIME OF APPROXIMATELY 945 DAYS. JUPITER IS AT APHELION, THE

TRAJECTOAY PERIHELION RADIUS IS 1 A.U. AND THE PERICENTER RADIUS AT JUPITER IS 500,000 N M.

TABLE VI

COMPARISON OF RESULTS FROM PATCH CONIC ANALYSIS AND THE
HIGH ENERGY AND GENERAL EQUATION SETS FOR JUPITER TRAJECTCRIES

SPHERE OF INFLUENCE MINOR BODY M~JOR BODY
PATCH POINT PARAMETERS "ARAMETERS
PERI- INCLI- SEMI- | ANGULAR| INCL!-
L M
ATITUDE |LONGITUDE ('.“EAND'I;EI; NATION &Jgn ENTUM  NATION
DEGREES | DEGREES AU DEGREES Au. [(Av.)*/DAY| DEGREES
PATCH CONIC 0.800 ~66.000 .00466 26.141 | 0.034783 022366 0.333
HIGH ENERGY EQN. SET NO SOLUTION
GENERAL EQN. SET 1.214 ~65.838 .004656 26.141 | 0.034783 022366 0.078
PATCH CONIC 0.400 —86.000 .00465 26.949 | 0.034727 1022360 1.242
HIGH ENERGY EQN. SET NO SOLUTION
GENERAL EQN. SET 0.040 —-66.800 00465 26.949 | 0.034929 022364 ¢ 8056
PATCH COMIC 0.800 —82.000 00466 131.882 | 0.036591 .022366 1.016
HIGH ENERGY EQN. SET NO SOLUTION
GENERAL EQN. SET 3.363 —-80.916 00465 131,892 | 0.038591 022385 0.947
PATCH CONIC ( —88.000 00465 158.542 | 0.0022527 ' .022368 178.797
HIGH ENERGY EON. SET NO SOLUTION
GENERAL EQN. SET NO SOLUTION

EARTHJUPITER TRAJECTORIES WITH A TRIP TIME OF APPROXIMATELY 980 DAYS. JUPITER I8 AT APHELION,
THE TRAJECTORY PERIHELION RADIUS i8 1 A. U. AND THE PERICENTER PADIUS AT JUPITER IS 500,000 N. M.
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trajectories, and for each trajectory, three rows of values

are presented. The first row contains the results of the
patched-conic analysis. These results constitute the input
values for the high energy and general equation sets. The
patch points calculated by the equation sets are given in the
first and second columns of the last two rows in each table.
These patch points should (and do) agree closely with the
pat~hed-conic patch point in the first row. Finally, the state
vector obtained using the input minor-body-centered parameters
and the patch points calculated by the equation sets were used
to calculate the major-body-centered inclination and angular
momentum. These values are presented in the last two columns
of the second and third rows of each table. Again, these values
should (and do) agree well with the patched conic angular mo-
mentum and inclination of the first row. The trajectory prob-
lems solved cover a range of Earth-Moon, Earth-Mars, and Earth-
Jupiter trajectories. For the interplanetary trajectories, the

Earth-centered trajectory portion was ignored and the trajectories

were assumed to have a 1 A.U. perihelion radius.

Tables I through III cover Earth-Moon trajectories for
a range of geocentric energies. The sphere of influence radius

was taken as 1.8 «x 108 feet for consistency with BCMASP.* Study
of these tables shows that the high energy equation set produces
excellent results in those cases where it is valid. However,

it is not capable of calculating the patch point for low energy
trajectories within the range of interest.

The results generated by the general equation set are
comparable in accuracy to those from the high energy equation
set. Moreover, the general set is able to calculate nearly all
the trajectoiies unavailable from the high energy set.

Mars and Jupiter trajectory results are tabulated in
Tables IV, V, and VI, For this set the radius of the sphere of
influence was calculated as

_ Mminor body 2/5
Ry = |g R,. (69)
major body

The results for Mars (Table IV) were very good. The excellence
of these results comes from Mars' small sphere of influence and
the small pericenter distance chosen for the problem. The re-

sults for Jupiter (Table V) are not quite as accurate. Jupiter

*Bellcomm Apollo Simulation Program.
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has a large sphere of influence compared with Mars and the
pericenter radius chosen for the study was also relatively
large. Even so, the results are satisfactory.

Table VI shows four more trajectories from Earth to
Jupiter. These have a slightly longer trip time than those in
Table V and are very nearly equivalent to a Hohmann transfer.
The results of the first three trajectories, which have posi-
grade helicentric portions, are similar to those of Table V.
The last trajectory, which has a retrograde heliocentric por-
tion, could not be calculated using either equation set.

The failure of both equation sets to calculate a patch
point for this trajectory is due to the limits on the minor-
body~-centered single-rectilincar trajectory energy ncted in
Egn. (45). The minor-body-centered energy selected is too
small to give a real solution for xSRTl in Egn. (43).

To find the real lower limit on the Jupiter trajectory
energy imposed by Egn. (45), the input value of a, was varied

to find its minimum value for an Earth-Jupiter trajectory. The
other trajectory elements selected were:

il = 3.1°

RPl = 500,000 n. mi.
s - [/}
12 - 3.03

h, = .02236 (A.U.)%/aay.

These « lements might represent a mission to Jupiter's moon
Europa (Jupiter II). Jupiter was taken to be at aphelion. The
minimum value for a, was found to be .03688 A.U. This repre-

sents a trajectory aphelion distance of 5.438 A.U. compared to
Jupiter's heliocentric distance of 5.455 A.U. Thus, the helio-
centric energy found is actually slightly less than the energy
of a formal Hohmann transfer, so we can say that the general
equation set does indeed cover essentially the entire spectrum
of possible Earth-Jupiter trajectory energies.

5.0 SUMMARY

Two equation sets have been derived which provide a
good approximation to the problem of patched conic analysis of
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spacecraft trajectories between two large central bodies satis-
fying bourndary conditions imposed at both central bodies. A
general equation set provides solutions over essentially the
entire spectrum of interesting trajectories, failing only for
extremely low energy trajectories. A high energy equation set
provides solutions only for the higher end of the trajectory
energy spectrum; however, it is somewhat simpler than the
general set. For easy reference, these equation sets are our-
ganized into a computational algorithm in Appendix B.

The primary benefit obtained from these equation sets
is an exact statement of the influence of the different vari-
ables on the trajectory problem. The analyst wishing to come
to grips with any problem of trajectory design is provided with
a powerful tool. By using derivatives of the patch point loca-
tion, problems in post-periselene abort and midcourse correc-
tion should become much more tractable. The problem of free
return and planetary swingby trajectories can also be reduced
to analytical form (Reference 2).

Another significant benefit is the improved calcula-
tion time for patched conic trajectories. Not only is the time
on a computer reduced, but the non-iterative solution format is
appropriate for use on a desk calculator if desired.

2011-KMC-vh K. M. Carlson

Attachments
Appendixes A, B, and C.
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APPENDIX A

DEFINITIONS, SYMBOLS, AND SUBSCRIPTS

A number of terms, symbols and subscripts are
utilized in the text. Definitions of frequently used terms,
as well as a listing of symbols and subscripts used, are
repeated here for easy reference.

A.l1 Definitions

Major Body - The more massive of the two large central
bodies. The gravitational field of this body
is assumed to pervade all space except a spheri-
cal region about the minor body.

Minor Body - The less massive of the two large central bodies.
The gravitational field of this body is assumed
to act only inside its sphere of influence, a
spherical region of space centered at the minor
body. The radius of the sphere of influence is
taken to be

hﬂninor body 2/5 R
o.

Mmajor body’

Rectilinear - A trajectory which rises and/or descends verti-
Trajectory cally with respect to its central body. Such
trajectories have zero angular momentum.

Dual - A trajectory between two central bodies in
Rectilinear which the portions of the trajectory centered
Trajectory at each body are rectilinear.

Single - A trajectory between two central bodies with

Rectilinear only one rectilinear body centered portion.
Trajectory

Non- - A trajectory which has no rectilinear portion.
Ractilinear This is, of course, the most general case.
Trajectory
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A.2 Symbols

a v semi-major axis
h ~ angular momentum

i ~ inclination

' cosil

i1 v modified inclination, il = , taken to have

CosBgpma

the same sign as il
+1 for trajectories from the minor body to the major body
-1 for trajectories from the major body to the minor body
"~ mass

radius

< = X
c

"~ velocity

w™
4

latitude

Yy ~ the distance the patch poinc is displaced from its
reference point

A ~ longitude
u "V gravitational constant of the body

¢ v the angle between the radius vector and the velocity
vector, measured from the radius vector

2 v the angle between the trajectory node nearest the

sphere of influence pierce point and the line between
the major and minor body centers

A.3 Subscripts
DRT + dual rectilinear trajectory
SRT1 ~ major-body-centered single-~-rectilinear trajectory
SRT2 "+ minor-body-centered single-rectilinear trajectory

NRT + non-rectilinear trajectory
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N

v

a minor body property referenced to the major body

a spacecraft property referenced to the minor body
and occurring at the sphere of influence

a spacecraft property referanced to the major body
and occurring at the sphere - € influence

Earth centered
selenocentric
apocentayr
paricenter
apogee

perigee

+ periselene

e
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APPENDIX B

A COMPUTATIONAL ALGORITHM FOR PATCHED CONIC TRAJECTORIES

The

equation sets have Leen organized into an algo-

rithmic form to facilitate their use. The required inputs
are listed and the calculation described in a step by step

fashion until

the final sclution is determined.

B.1 Basic Data Required

ulr Uz

Ro -

%o

Vo -

the gravitational constants of the major and
minor bodies

the distance between the major and minor body
at the time of penetration of the sphere of
influence

the angle from the minor body radius vector to
the minor body velocity vector at the time of
penetraticn of the sphere of influence

the velocity of the minor body at the tine of
penetration of the sphere of influence

B.2 Trajectory Iaputsg

N -

the spacecraft minor-body-centered velocity at
the sphere of influence

the spacecraft minor-bcdy-centered flight path
angle of the sphere of influence

the spacecraft minor-bedy-centered inclination,
referenced to th.: minor body's orbital plane

the spacecraft major-body-centered angular
momentum

the spacecraft major-body-centered inclination,
referenced to the minor body's orbital plane

B.3 Alternative Inputs

a, - the minor-body~centered semi-majcr axis; vy is

obtained from
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2 2 ]
v = y (—— + -——)
1 1 Rl a;

R - the minor-body-centered radius of pericentron; ¢
Pl . ) 1
is obtained from

R,, and R,, - the major-body-ce..cered apsicdal distances;

A2 P2 h2 is obtained from
n = \Ll2Ra2Re2
2 RA2 + sz

Note that if Rp, << Ry,, as is tvpica’ of Earth-Moon trajectories,
then

hy ¥ V2u,Rp,

The sphere of influence radius iz obtained from

Rl -(E’ RO

< il
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B.4 The Minor-Body-Centered Single-Rectilinear Patch Point

sin _ hzslnlzsanSRTz
BsrT2 RV sing,

where
tan _ R1V051n¢97
SRT2 RlVOcos¢o + RokV1
and
N
sim _ -AC : 5\/A2 + 82 - ¢?
SRT2 A2 + B2
where
A= ROle + Rlvocos¢o
B = R1V051n¢0
ce- R0V051n¢o - h2c0312
cosBSRTZ

The angles B grT2 and ASRTZ are the minor-body-centered single-
rectilinear patch point coordinates. The sign in the A\ SRT2
equation is chosen according to

. -1 A . .
a) ASRTZ < sin (—E’, use the minus sign.

b)  Agpmay * sin”! ‘-%), use the plus sign .
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The choice of sign differentiates the minor-body-centered
single-rectilinear trajectories roughly into those lying com-
pletely within the minor body's orbital path (Case a) and
those that lie partly or completely outside the minor body's
trajectory path (Case b). A gRT?2 lies in the first or second

quadrant for trajectories from the minor body to the major
body, and in the third or fourth quadrant for trajectories
from the major body to the minor body.

B.5 The Patch Point Displacement

Next, calculate the trajectory patch point displace-
ment from the minor-body-centered single-rectilinear patch point
by either of the following two methods.

B.5.1 High Energy Trajectory Case

. Vlsin¢l
SiMsr11 = V_sing, ° " DRT
and
-
sin _-ACtl;\/A2+BZ-cz
AprT = 22 1 p2 e
with

A= RokV1 + R1V0C05¢°

o
0l

R1V051n¢o

9]
"

-R V. sing

where k determines the direction of V; and obeys the rules:

k = +1 for trajectories from the minor body to the major
body
k = =1 for trajectories to the minor body from the major

body.

ERREIvERt I

S
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The angle ADRT is the longitude of the associated dual recti-

linear trajectory. The sign in the ADRT equation is chosen
according to

. . o=1 A . .
a) if Aprr < Sin (-E r use the minus sign

-1

b) if > sin ‘—%  use the plus sign

DRT

This procedure will produce values for Y SRT1 only

for relatively high energy trajectories. The following alter-~
native procedure is more general.

B.5.2 General Trajectory Case

TN

_ -AC ¢ 5\/A2 + B2 - ¢?
a? + p?

sinyNRT

with

]
A= RlVo[(51n¢°)(cosASRTzs:LnBSRTzslnll - s1nASRT2cos1l)
] ]
+ (cos¢o)(sinASRTzsinBSRTzsinil + cosxSRTzcosilﬂ

+ ROV1 Esin¢1)(-sinASRTzcosBSer)
[ ]

]
+ (cos¢l)(-81nASRT251nBSRT2sin11 - cosASRT2c051lﬂ

[o+]
]

Rlvo [}sin¢ocosASRT2cosBSRT2 - cos¢°sinASRT2 cosBSRTZ]
[ ]

+ ROVl Esin¢l)(-sinASRTzsinBSRTzsinil - cosASRTzcosil)

+ cos¢lsinASRT2cossSRT2

0
]

]
hlcos1l - hzcosi2 + vaosin¢°
where
' cosi1

cos8i, & ——————m
1~ cosBgppy '

SURIR W
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and

The gquantities il’ il and i2 carry signs, according to the rules:

- B6 -

hl = Rlvlsin¢1 .

]

Nearest minor-body-centered node

Ascending

Descending

]
il and i1 are negative

1
i1 and i1 are positive

and

by the above rule, this sign must be modified (for both il and
]
il ) for use in the YNRT equation according to the following

algorithm:

Nearest major-body-centered node

Ascending

Descending

iz is positive

i2 is negative

]
Having chosen the appropriate sign for il and il
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2 2 2 2
(A2 +82 - C? >eC?)

NO YES

USE +i,

(A?+8% ~c? <0l ,;
AND ————{ VvES
(A? +B%2 -c?<0) _,

L] L
T USE +i, AND SET

NO A?+B? -C%2=0

1

whe

2 2 2 2 2 2
(A% +B% —C%) ,; >(A?+B° -C*) g
) T
b
YES NO s
! ! @
USE+il USE-—!. |

Yote that the sign of il is changed in the YNRT
equation only. The sign on the radical in the YNRT equation
is chosen to obtain the smallest positive value of YNRT for

trajectories from the minor body to the major body and to
obtain the smallest negative value of YNRT for trajectories

from the major body to the minor bndy.

B.6 The Non-Rectilinear Patch Point

The non-rectilinear patch point may be obtained from
the values obtained so far in either of two ways:
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a) The patch point latitude is given by

BNRT = Bgry2 t 08

and the longitude by

NRT = Agrr2 T 4*.

where
‘. L] 0' ]
sinag = sini, S1NYgpm1
tanax = coszl tanYSRTl
or
. . o. 3
sinag = sini, Sinyyem
‘l
tanay = cosi, tanyNRT

depending on whether y or vy was obtained in the previous
step. As before SRT1 NRT

' cosil
cosi, = ——w0
1l cosBSRTz

b) The alternative formulation for 3NRT’ ANRT is

-1 [8inBgpn,

sinBNRT = sinilsin YgrT1 + 8sin 51n
1
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or

sinsNRT = sinilsin YNRT

- sing
+ sin 1 ( SRTZ)
sinil

dependlng on whether Ysrrl ©F YnrT WaS obtained in the previous
step. Finally

A

NRT - “SRT2

tang tang
, =1 SRT2 . =1 NRT
+ sin ( tan 1, ) - sin ( tan il)

B.7 The State Vectors at Sphere of Influence Penetration

B.7.1 The Minor-Body-Centered State Vector

The longitude of the nearest node line is

- tang
+ sin 1 (———Jggﬁ

Q. = A
1l tan 11

NRT

The argument of latitude of the patch point with respect to
%, is

a

The position vector is then

X, = Rl(cosnlc05w1 + sinnlcosilsinml)

(%]
(v}
]

Rl(sinnlc05wl - cosnlcosilsinml)

zZ, = Rlsinilsinwl

A e

" it
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The velocity vector is

Vl[sin¢1 (cosnlsinwl - SiancosilCOSml)

- cos¢1 (cosalcosw1 + sinnlcosilsinwl)]

yl = Vl[51n¢l (51nﬂlsinwl + cosQlc0511c05ml)

-cos¢1 (sinﬂlcosw1 - cosnlcosilsinwl)]

= Vl[-sin¢lsin11COSml - cos¢lsinilsinml]

for
|

B.7.2 The Major-Body-Centered State Vector

2 (o}
yZ = "yl
z, =2,
Xy = =Xy = Vocos¢o

Y, = -Y, + Vosirwo

2, =73

The solution is now complete.
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APPENDIX C

SOME USEFUL TECHNIQUES AND APPROXIMATIONS

C.1 Use of the Equation Sets as a Rigorous Patched-Conic
Trajectory Generator

For studies that require more precise results than
those available from the equation sets, these sets may be used
in an iterative scheme to provide a rigorous patched-conic
result. This has the advantage over standard patched-con:ic
analyses that the iterative parameters are true trajectory
parameters rather than the patch point coordinates.

To create a rigorous patched-conic result, the major-
body-centered angular momentum and inclination used in the
equation set become shaping parameters, and are varied until
the angular momentum and inclination that are actually cbtained
match the desired values. A simple mirror imagining technique
is effective. That is, the amount the resultant i2 and h2

values exceed the desired values is subtracted from the input i2
and h2 values. The iteration may be performed on iz and h2
simultaneously. Convergence is very rapid.

C.2 Approximating the Major-Body-Centered Anqular Momentum

In general, trajectory angular momentum is not one of
the basic design parameters for a mission. Therefore, it would
be useful to find a relationship between angular momentum and
some other parameter which is basic to the mission desiga. For
many problems of interest, this is easily done.

C.2.1 Earth-Moon Trajectories

The geocentric angular momentum may be written

Rpg)
hE = .VHERPG (2 - -a—E—- (C'l)

RPG is typically much smaller than ap. This can be seen by

considering that ap = %(RpG + Rpc) and that Ry > R, = R,.



o~ ;;M;!;p' (XIS

et L

MNQ .wﬂ

o
] 4 *

t

Baamc-y

BELLCOMM. INC. - C2 -

. s o1
Thus, the minimum ap is f(RPG + Ro - Rl). Typical
values for these parameters are

8

RPG .215 x 10" ft (100 n. mi. altitude)

R, 11.7 x 108 ft (closest approach)

8

Ry 2 x 10" ft

In this case RPG is only 4.3% of ag. We may then make the
approximation

h2 = 1/2uERPG. (C~2)

This is the expression for the angular momentum of a parabolic
trajectory with perigee radius RPG' Thus, typical Earth-Moon

trajectories are nearly parabolic. Normally, the perigee radius
can be assumed equal to the parking orbit radius for trajecto-
ries from the Earth to the Moon. For trajectories from the Moon
to the Earth which must enter the Earth's atmosphere in the
Apollo entry corridor, a perigee altitude of 100,000 feet has
been found to produce the desired results.

The validity of this approximation has been tested
for a number of trajectories. The results are tabulated in
Tables C-I to C-VIII and zummarized in Table C-IX.

The data in Tables C-I to C~VIII were generated in
the following steps. The title in parentheses for each step
corresponds to the row name in the tables.

a) (Pacched Conic) Calculate a set of trajectories
using a rigorous patched-conic analysis for given
values of RPS' RPG' geocentric energy and sphere

of influence patch point coordinates.

k) (Equation Set) Calculate the patch point with the
equations set, using the values of
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R

1z Rpg

417 13+ Rpgy

obtained in (a) and calculating hE by

hg =V 2ugRpg

c) (Inverse) Use the values of geocentric energy and
patch point calculated in (b), along with the values

of RPS and RPG used in (a), to make another rigorous

patched-conic analysis.

d) (Error) Take the difference between the values
obtained in (a) and those obtained in (b) and (c).

Finally, the average error between (a) and (b) is calculated and
stated at the bottom of each Table. The Moon's parameters were
calculated from the assumed lunar elements:

semi-major axis = 12.54 «x 108 feet

eccentricity = .06380

Step (c) is intended to give the analyst a feeling
for the significance of the patch point errors.

Table C-IX is a listing of the average and maximum
errors for each of Tables C-I to C-VIII. The results show
very good agreement between techniques.

C.2.2 .nterplanetary Trajectories

Another expression for angular momentum is

¥R
h = Vz AP (c-3)

W+ )

where R, is the apocenter radius and RP is the pericenter radius.
Thus, for interplanetary trajectories angular momentum is related

Mot ol
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to the trajectory perihelion and aphelion distances. It is
usually more meaningful to choose the apsidal distances rather
than the angular momentum of the trajectory in mission anralyses.
Also, many interplanetary trajectories closely approximate the
minimum energy Hohmann transfer, and for such trajectories,

the heliocentric distances of the planet of departure and the
planet of arrival become the apsidal distances.

PP




TABLE C-i

TRANSLUNAR TRAJECTORIES USING THE PARABOLIC APPROXIMATION TO ANGULAR MOMENTUM
HIGH ENERGY EQUATION SET

MOON AT APOGEE; 80 HOUR TRIP TIME

. . GEOCENTRIC
3 " 12 ﬁNRT RNRT ENERGY
: B8
Patched Conic | 0.18606 x 10 132.39% 18.584 0 46.0000 —8.1700 x 10°
Equation Sat 018502 x 10° -0.0836 45.9261 —8.1625 x 10°
Inverse . x 132.240 18.115
Error 0.00014 x 10° 0.156 0.469 0.0836 0.0739 0.0075x 105
Patched Conic |, o0 x 10° 103.323 24.778 0 44,0000 -8.1700 x 10°
Equation Set -0.1151 43.9096 —8.1609 x 10°
inverse 0.18070 x 10° 103.334 24.028
Ervor ©.00001 x 10° 0.011 0.750 0.1151 0.0904 0.0091 x 10°
Patched Conic | 0,17833 x 10° 80.465 25.055 o 42,0000 —8.1700 x 10°
Equation Set 017829 x 10° ~0.1260 41.8931 —8.1591 x 10°
Inverse . x 80.430 24.229
8
Error 0.00004 x 10 0.035 0.826 0.1260 0.1069 0.0109 x 10°
Patched Conic | g 15528 x 10° 175.842 24.697 4.0000 48.0000 ~8.1700 x 10°
Equation Set . 4.0986 47.9226 —8.1606 x 10°
Inverse 0.18509 x 10 175.773 24.311
Error 0.00019 x 10° 0.069 0.386 0.0886 0.0774 0.0094 x 10°
i 8
:“"":" °°s::° 0.18977 x 10 137.327 6.552 4.0000 46.0000 —8.1700 x 10°
at10! o
":“.'; n 018919 x 108 136,738 7235 4.1439 45.9147 —~8.1599 x 106
Error 0.00058 x 10° 0.589 0.683 0.1439 0.0853 0.0101 x 108
Patched Coni 8 0000
Perche °'s’:"° 0.18791 x 10 11270 0.668 a. 44.0000 -8.1700 x 10°
quation . 3.9990 43.8991 —8.1587 x 10°
lnverse 0.18739 x 107 110.839 0.647
Error 0.00052 x 10 0.431 0.021 0.0010 0.1009 0.0113 x 10°
Patched Conic | 4 12706 x 10° 147.096 37.054 2.0000 48.0000 ~8.1700 x 10°
Equation Set \ 8.1590 47,8927 -8.1562 x 10°
Inverse 0.17588 x 10 145,686 37.739
Error 0.00108 x 10° 1.410 0.685 0.1590 0.1073 0.0148 x 10°
Patched Canic | g 18106 x 10° 124.766 28.125 8.0000 46.0000 ~8.1700 x 10°
Equation Set . 8.1792 45.8912 —8.1553 x 10°
Inverse 0.,17983 x 10 123.603 29.145
Error 0.00123 x 10" 1.163 1.020 0.1792 0.1098 0.0147 x 10°
Patched C;:" 0.18132 x 10° 103.300 23.832 8.0000 44.0000 ~8.1700 x 10°
'Equmon o of 25.062 8.1859 43,8876 ~8.1851 x 10°
nverse .18004 x 102.280 N
Error 0.00128 x 10° 1.110 1.220 0.1859 0.1125 0.0109 x 10°
Patched Conic | ¢ 14597 x 10° 120421 76.208 12,0000 50.0000 -8.1700 x 10°
Equation Set \ 12.1189 49.9275 -8.1585 x 10°
inverse 0.14368 x 10 117.248 78.444
Error 0.00211 x 10° 3178 2.238 0.1189 0.0725 0.0115 x 10°
Patched Conic | 4 45378 x 10° 109.470 65.070 12.0000 48.0000 -8.1700 x 10°
Equation Set 12.1284 47.9210 —8.1579 x 10°
Inverse 0.15171 x 10° 108.823 67.078 .
Error 0.00205 x 10° 2647 2.006 0.1284 0.0790 0.0121 x 10
Patched Conic | o 1uxv9 x 10° 9.112 60.809 12.0000 #8.0000 -8.1700 x 10°
Equation Set \ o sa.2m0 12.1160 48.9357 -8.1809 x 10°
Inverse 0.15333 x 10 88. g
Error 0.00238 x 10° .on 2474 0.1160 0.0843 0.0101 x 10°
AVG c.an3 0.0900 0.0110 x 10°
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TABLE C-lI

TRANSLUNAR TRAJECTORIES USING THE PARABOLIC APPROXIMATION TO ANGULAR MOMENTUM
HIGH ENERGY EQUATION SET
MOON ASCENDING; 75 HOUR TRIP TIME

. . GEOCENTRIC
a n 2 ﬁnnr >\NRT ENERGY
Patched Conic 0.17167 x 10° 149,135 12.077 0 48.0000 -9.30  0°
Equation Set —0.0788 47.9316 9,203 ¢
inverse 0.17148 x 10° 148.857 11.720
Error 0.00019 x 10° 0.278 0.357 0.0788 0.0684 0.0069 x 10°
Patched Conic 0.16261 x 10° 89.674 23.951 0 44.0000 -9.3000 x 10°
Equation Set s ~0.1531 43.8808 -9.2884 x 10°
Inverse 0.16262 x 10 89.680 22.887
Error 0.00001 x 10° 0.008 0.964 0.1531 0.1192 0.0116 x 10°
Patched Conic 0.16164 x 10° 43.413 16.071 0 40.0000 -9.3000 x 10°
Equation Set s —0.1214 30.8284 -9.2309 x 10°
Inverse 0.16121 x 10 42,801 15.160
Error 0.00043 x 10° 0.612 0.911 0.1214 0.1716 0.0191 x 10°
Patched Conic 0.16903 x 10° 117.582 13.607 6.0000 46.0000 -8.3000 x 10°
Equstion Set 6.2199 45.8856 -9.2854 x 10°
tnverse 0.16807 x 10° 118.776 14.813
Error 0.00096 x 10° 0.906 121 0.2199 0.1144 0.0146 x 10°
Patched Conic 0.16502 x 10° 72.251 12.285 6.0000 42.0000 -9.3000 x 10°
Equation Set s 6.2035 41.8462 ~9.2809 x 10°
Inverse 0.16390 x 1C 71.140 13.712
Error 0.00112 x 10° 1111 1.427 0.2035 0.1638 0.0181 x 10°
Patched Conic 0.12838 x 10° 123.623 80.842 12,0000 52.0000 -8.3000 x 10°
Equation Set 12,1276 51.9369 ~9.2888 x 10°
Inverse No inverse
Error Sclution 0.1275 0.0631 0.0112 x 10°
Patched Conic 0.14110 x 10° 99.828 60.516 12.0000 48.0000 -9.3000 x 10¢
Equation Set s 12.1458 47.9188 —9.2868 x 10°
Inverse 0.13884 x ‘°s 96.860 62.955
Error 0.00226 x 10 2.968 2439 0.1458 0.0812 0.0132 x 10°
Patched Conic 0.95504 x 10’ 78.231 154.880 [ 54.0000 -9.3000 x 10°
Equation Set 0.1121 54.0840 -9.3074 x 10°
Inverse 0.95683 x 107 78.420 186.712 .
Ervor 0.00041 x 107 0.198 0.882 0.1121 0.0840 0.0074 x 10
Patched Conic 0.97213 x 107 53.522 143.231 2.0000 52.0000 —9.3000 x 10°
Equation Set 2.0841 52.0851 ~9.3084 x 10°
Inverse 0.97628 x 10’ 55.263 141.963
Ervor 0.00415 x 107 1.741 1.268 0.0841 0.0851 0.0054 x 10°
AVG 0.1388 0.1023 0.0121 x 10°
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TABLE C-llI

TRANSLUNAR TRAJECTORIES USING THE PARABOLIC APPROXIMATION TO ANGULAR MOMENTUM
HIGH ENERGY EQUATION SET
MOON AT APOGEE; 60 HOUR TRIP TIME

s , i 8 A GEOCENTRIC
1 1 2 NRT NRT ENERGY
Patched Conic 0.85089 x 10’ 123.081 22.204 0 30.0000 —2.18000 x 10°
Equation Set -0.0210 29.9809 -2.7961 x 10°
Inverse 0.85068 x 107 122.9a1 22.056
Error 0.00021 x 107 0.140 0.148 0.0210 0.0191 0.0039 x 10°
Patched Conic 0.84276 x 107 164.371 33.270 3.0000 32.0000 -2.8000 x 10°
Equation Set ,; 3.0216 31.9763 —2.7948 x 10°
Inverse 0.84341 x 10 166.079 32.558
Error 0.00065 x 107 1.708 0.712 0.0216 0.0237 0.0052 x 10°
Patched Conic 0.86317 x 107 132.241 5.248 3.0000 30.0000 —2.8000 x 10°
Equation Set 3.0388 29.9753 -2.7947 x 10°
Inverse 0.86259 x 107 131.823 5.443
Error 0.00058 x 107 0.418 0.195 0.0388 0.0247 0.0053 x 10°
Patched Conic 0.85657 x 107 95.620 1.378 3.0000 28.0000 -2.8000 x 10°
Equation Set 0.0333 27.9735 -2.7944 x 10°
Inverse 0.85605 x 10 95.320 1.138
Error 0.00062 x 107 0.300 0.242 0.0333 0.0265 0.0056 x 10°
Patched Conic 0.75480 x 107 167.778 80.525 6.0000 36.0000 —2.8000 x 10°
Equation Set 6.0558 35.9722 -2.7930 x 10°
Inverse 0.75495 x 107 168.735 80.238
Error 0.00015 x 107 0.957 0.289 0.0558 0.0267 0.0070 x 10°
Patched Conic 0.79979 x 107 173.184 68.417 6.0000 74.0000 ~2.8000 x 10°
Equation Set 8.0472 33.9654 ~2.7917 x 10°
Inverse 0.79963 x 107 172.560 58.227
Error 0.00026 x 107 0.624 0.190 0.0472 0.0346 0.0083 x 10°
Patched Conic 0.83314 x 10’ 148.580 38.976 6.0000 32.0000 ~2.8000 x 10°
Equation Set , 6.0501 31.9643 -2.7916 x 10°
Inverse 0.83223 x 10 147.639 39.070
Error 0.00091 x 107 0.921 0.095 0.0501 0.0367 0.0082 x 10°
Patched Conic 0.84474 x 10’ 118.184 27.308 £6.0000 30.0000 -2.8000 x 10°
Equation Set . 6.0505 29.9680 -2.7927 x 10°
Inverse 0.84363 x 10 112.480 27.630
Error 0.0011% x 107 0.704 0.324 0.0505 0.0320 0.0073 x 10°
AVG 0.0298 0.0279 0.0064 x 10°




TABLE C-IV

TRANSLUNAR TRAJECTORIES USING THE PARABOLIC APPROXIMATION TO ANGULAR MOMENTUM
HIGH ENERGY EQUATION SET

MOON AT APOGEE; 80 HOUR TRIP TIME

3 i i Burr AngT GEE?\‘CEERNGTYR'C
Patched Conic 0.22120 x 10° 109.740 44.074 10.0000 44.0000 —8.1700 x 10°
Equation Set 10.0434 43.5876 —8.1270 x 10°
inverse 0.21664 x 10° 107.039 44.821
Error 0.00456 x 10° 2.701 0.757 0.0434 0.4124 0.0520 x 10°
Patched Conic 0.21537 x 10° 69.582 44.075 10.0000 40.0000 —8.1700 x 10°
Equation Set 10.0023 39.5106 —8.1190 x 10°
Inverss 0.21233 x 10° 67.714 44,073
Error 0.00304 x 10° 0.232 0.00% 0.0023 0.4894 0.0510 x 10°
Patched Conic 0.13803 x 10° 51.911 96.116 14.0000 48.0000 —8.1700 x 10°
Equation Set 14.3576 48,1906 —8.1708 x 10°
inverse 0.13225 x 10° 40.670 90.363 .
Error 0.00678 x 10° 11.241 4.247 0.3675 0.1806 0.0008 x 10"
Patched Conic 0.18816 x 10° 32.749 56.441 14.0000 40.0000 —8.1700 x 10°
Equation Set 14.2389 30.7658 —-8.1367 x 106
Inverse 0.18374 x 10° 29,813 66.907
Error 0.00242 x 10° 0.064 0.466 0.2389 0.2342 0.0333 x 10°
Patched Conic 0.12871 x 10° 101.125 95.887 20.0000 54.0000 —8,1700 x 10°
Equation Set 20.4039 54.2641 —-8.1732x 10°
Inverse No Inverse
Error Solution 0.4039 0.2541 0.0032 x 10°
Patched Conic 0.16331 x 10° 48.180 69.479 20.0000 44.0000 —-8.1700 x 10°
Equation Set 20.4081 44.0395 —8.1555 x 10°
Inverse 0.16916 x 10° 59.160 66.332
Ervor 0.00685 x 10° 11.000 3.147 0.4081 0.0395 0.0146 x 10°
AVG 0.2424 0.2684 0.0258 x 10°
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TABLE C-v

TRANSLUNAR TRAJECTORIES USING THE PARABOLIC APPROXIMATION TO ANGULAR MOMENTUM
HIGH ENERGY EQUATION SET

MOON AT APOGEE; 80 HOUR TRIP TIME

« Sammny o ——
- .

a i ) Burr AngT GEE?\'%ERNGTy Ic
Patched Conic 0.15186 x 10° 154.571 87.655 ()} ~72.0000 —8.1700 x 10°
Equation Set 0.9825 71.5678 —8.0956 x 10°
Ir.verse 0.15416 x 10° 157.413 82.853
Error 0.00230 x 10° 0.158 4.802 0.9825 0.4322 0.0744 x 10°
Patched Conic 0.21048 x 10° 189.435 22.472 0 69.0000 -8.1700 x 10°
Equation Set 0.2989 68.6042 -8.1287 x 10°
Inverse 0.20610 x 10° 167.212 25.814
Error 0.00438 x 10° 2.223 2.342 0.2989 0.2958 0.0513 x 10°
Patched Conic 0.21478 x 10° 172.181 14.413 5.0000 69.0000 -8.1700 x 10°
Equation Set 5.4080 68.5826 -8,1240 x 10°
Inverse 0.21209 x 108 171.242 14.916 .
Error 0.00269 x 10° 0.939 0.503 0.4090 0.4174 0.0450 x 10
Patched Conic 0.19950 x 108 150.336 33.350 5.0000 66.5000 -8.1700 x 10°
Equation Set 4.8211 66.1798 -8.1392 x 10°
Inverse 0.19266 x 10° 148.386 39.409
Error 0.00684 x 10° 1.950 6.059 0.1789 0.3202 0.0336 x 10°
Patched Conic 0.17941 x 10° 169.343 59.240 10.0000 72.0000 ~8.1700 x 10°
Equation Set 10.7819 70.9716 -8.0068 x 10°
Inverse 0.17018 x 10° 167.908 62.856
Error 0,00923 x 10° 1.435 3616 0.7819 1.0284 0.1632 x 10°
Patched Conic 0.16050 x 10° 116.810 66.769 10.0000 58.4000 —8.1700 x 108
Equation Set 9.7810 58.1513 —8.1364 x 10°
inverse No Inverse
Error 0.2190 0.2487 0.0308 x 10°
Patched Conic 0.20726 x 10° 144.973 19.262 16.0000 65.0000 -8.1700 x 10°
Equation Set 15.8146 64.2683 -8.0784 x 10°
Inverse 0.20046 x 10° 143.942 23.235
Error 0.00680 x 10° 1.031 3.973 0.8148 0.7317 0.0918 x 10°
Patched Conic 0.14693 x 10° 143.782 92.059 20.0000 71.0000 —8.1700 x 10°
Equation Set 20.6139 69.6557 —8.0008 x 10°
s e
Inverse 0.13539 x 10 140.093 102.1224
Error 0.01154 x 10° 3.689 10.083 0.6139 1.3443 0.1692 x 10°
Patched Conic 0.20047 x 10° 12151 13.585 20.0000 57.0000 ~8.1700 x 10°
Equation Set 20.8720 56.2725 ~8.0774 x 10°
Inverse 0.19404 x 10° 120.633 18.519
Error 0.00643 x 108 0.878 4.934 0.8720 0.7274 0.0926 x 10°
Patched Conic 0.11248 x 10° 97.637 140.941 26.0000 57.0000 —8.1706 x 10°
Equation Set . 24.4829 58,8375 ~8,1288 x 10°
(nverse 0.11046 x 10°, 96.542 145.441
Error 0.00202 x 10 0.995 4.500 0.5171 0.1628 0.0414 x 10°
AVG 0.5888 0.5709 0.0793 x 10°
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TABLE C-VI

TRANSLUNAR TRAJECTORIES USING THE PARABOLIC APPROXIMATION TO ANGULAR MOMENTUM

HIGH ENERGY EQUATION SET
MOON AT APOGEE; 80 HOUR TRIP TIME

a i iz BurT AnrT GEE(I)\I%ERNGTYRIC
Patched Conic 0.21501 x 10° 111.348 51.354 4.0600 54.0000 -8.1700 x 10°
Equation Set 4.3792 53.8165 —8.1683 x 10°
Inverse 0.22247 x 10° 112.275 48.533
Error 0.00746 0.927 2.821 0.3792 0.1835 0.0017 x 10°
Patched Conic 0.18270 x 10° 93.661 61.484 4.0000 48.0000 -8.1700 x 10°
Equation Set s 4.1258 47.3723 -8,1141 x 10°
Inverse 0.18202 x 10 93.539 60,675
Error 0.00068 x 10° 0122 0.809 0.1258 0.6277 0.0559 x 10°
Patched Conic 0.22034 x 10° 100.692 46.322 6.0000 48.0000 ~8.1700 x 10°
Equation Set 7.0660 47.5005 -8.1568 x 10°
Inverse 0.23301 x 10° 102.050 41.134
Error 0.01267 x 10° 1.358 5.188 1.0660 0.4995 0.0132 x 10°
Patched Conic 0.21039 x 10° 91.465 47.984 6.0000 44.0000 -8.1700 x 10°
Equation Set 6.8737 43.1564 -8,1134 x 10°
tnverse 0.21706 x 10° 92.306 43.882
Error 0.00667 x 10° 0.841 4.102 0.8737 0.8436 0.0566 x 10°
Patched Conic 0.85754 x 107 57.918 159.124 12.0000 48.0000 —8.1700 x 10°
Equation Set 11.0533 47.9265 -8,1397 x 10°
Inverse 0.86579 x 107 58.805 154,286
Error 0.00825 x 107 0.887 4.859 0.9467 0.0735 0.0303 x 10°
Patched Conic 0.81972x 107 28.021 167.410 12.0000 40.0000 -8.1700 x 10°
Equation Set 11.6782 40.2808 —-8.2026 x 10°
Inverse 0.82075 x 107 28.284 169.273
Error 0.00103 x 107 0.263 1.863 0.3218 0.2808 0.0326 x 10°
Patched Coanic 0.87779 x 107 74.928 160.089 24.0000 54.0000 -8.1700 x 10°
Equation Set 23.1392 54,5368 -8.2381 x 10°
Inverse 0.87744 x 10’ 74.893 163.885
Error 0.00035 x 10’ 0.035 3.796 0.8608 0.5368 0.0861 x 10°
Patched Conic 0.63289 x 107 43.988 131.307 24.0000 40.0000 -8,1700 x 10°
Equation Set 23.7883 41.1382 -8.3020 x 10°
Inverse 0.93618x 10’ 44.477 133.778
Error 0.00329 x 107 0.491 2.489 0.2117 1.1382 0.1320 x 10°
Patched Conic 0.12203 x 10° 86.743 101.872 36.0000 54.0000 -8.1700 x 10°
Equation Set 35.8902 54.0584 -8.1318 x 10°
Inverse 0.12118x 10° 88.441 102.832
Error 0.00085 x 10° 0.302 0.960 0.1088 0.0584 0.0118 x 10°
Patched Conic 0.144886 x 10° 89.777 79.388 36.0000 40.0000 -8.1700 x 10°
Equation Set 38.3200 40,8693 —8.2539 x 10°
Inverse 0.14773 x 10° 70.734 78.974
Error 0.00307 x 10° 0.957 0.412 0.3200 0.8893 0.0839 x 10°
AVG 0.5218 0.5109 0.0484 x 10°
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TABLE C-VII

TRANSLUNAR TRAJECTORIES USING THE PARABOLIC APPROXIMATION TO ANGULAR MOMENTUM

GENERAL EQUATION SET

MOON ASCENDING; 75 HOUR TRIP TIME

. . CE

3 h 2 Bnmr Anrr GEE%ERNGTleIC
Patched Conic 0.17167 x 10° 149.135 12,077 0 48.0000 -9.3000 x 10°
Equation Set 0.0484 47.8820 -9.2875
Inverse 0.17116 x 10° 148.409 12.050
Error 0.00051 x 10° 0.726 0.027 0.0494 0.1180 0.0125 x 10°
Patched Conic 0.16261 x 10° 89.674 23.951 0 44.0000 -9.3000 x 10°
Equation Set 0.3429 43.8836 —-9.2026 x 10°
Inverse 0.16088 x 10° 88.095 26.132
Error 0.00173 x 10° 1.579 2.181 0.3429 0.1164 0.0174 x 10°
Patched Conic 0.16164 x 10° 43.413 16.071 0 40.0000 —9.3000 x 10°
Equation Set 0.0692 39.8839 -9.2870 x 10°
inverse 0.16110 x 10° 42,514 16.207
Error 06.00054 x 10° 0.899 0.138 0.069? 0.1161 0.0130 x 10°
Patched Conic 0.16403 x 10° 117.682 13.607 6.0000 48.0000 -9.3000 x 10°
Equation Set 6.2327 45.8924 -9.2860 x 10°
(nverse 0.16808 x 10° 116.780 14.894
Error 0.00095 x 10° 0.802 1.287 0.2327 0.1076 0.0140 x 10°
Patched Conic 0.16502 x 10° 72.251 12.285 6.0000 42.0000 -9.3000 x 10°
Equation Set 6.1133 425215 -9.3970 x 10°
Inverss 0.16840 x 10° 71.681 12.725
Error 0.00338 x 10° 0.570 0.440 0.1133 0.5215 0.0970 x 10°
Patched Conic 0.12836 x 10° 123.623 80.842 12.0000 52.0000 -9.3000 x 10°
Equation Set 12.1950 51.9827 -9.2914 x 10°
Inverss 0.12416 x 10° 116.253 86.494
Error 0.00420 x 10° 7.370 5.852 0.1950 0.0173 0.0088 x 10°
Patched Conic 0.14110 x 10° 99.628 60.516 12.0000 48.0000 -9.3000 x 10°
Equation Set 12.1444 479186 -9.2888 x 10°
inverse 0.13886 x 10° 96.687 62.931
Error 0.00224 x 10° 2.941 2415 0.1444 0.0814 0.0132x 10°
Patched Conic 0.095504 x 10° 76.231 154.850 0 £54.0000 -9.3000 x 10°
Equation Set 0.1273 54.0877 -9.3076 x 10°
Inverse 0.095536 x 10° 76.408 155.834
Error 0.000058 x 10° 0.177 0.984 0.1273 0.0877 0.0076 x 10°
Patched Conic 0.007213 x 10° 53.522. 143.231 2.0000 52.0000 ~9.3000 x 10°
Equation Set 2.1489 521134 -9.3094 x 10°
Inverss 0.097950 x 10° 56.588 141.001
Error 0.000737 x 10° 3.048 2.230 0.1489 0.1134 0.0004 x 10°

AVC 0.1581 0.1422 0.01927 x 10°
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TABLE C-vill

1

TRANSLUNAR TRAJECTORIES USING THE PARABOLIC APPROXIMATION TO ANGULAR MOMENTUM
GENERAL EQUATION SET

r MOON AT PERIGEE; 90 HOUR TRIP TIME
{ ‘ . . .
3 " 2 BT AngT GEE%CEERNGTYR ¢
( Patched Conic 0.26270 x 10° 188.446 4.561 0 74.5000 -11.4700 x 10°
Equation Set 0.1687 73.845¢ —11.4500 x 10°
fnverse 0.26123 x 10° 171.i90 4.252
q Error 0.00147 x 10° 2.744 0.309 0.1687 0.6541 0.0200 x 10°
i Patched Conic 0.23825 x 10° 91.766 22.871 0 65.0000 ~11.4700 x 10°
Equation Set 0.1494 64,5692 -11.4523 x 10°
. Inverse 0.23616 x 10° 91.428 23.620
‘ Error 0.00209 x 10° 0.337 0.749 0.1494 0.4308 0.0177 x 10°
Patched Conic 0.23707 x 10° 18.169 6.801 0 56.0000 -11.4700 x 10°
) Equation Set 0.1201 55.6671 ~11.4610 x 10°
inverse 0.22743x* 8 17.619 7.199
) Error 0.00964 x 1v° 0.550 0.398 0.1291 0.3329 0.0190 x 10°
i Patched Conic 0.23848 x 10° 169.369 31.391 7.0000 76.0000 —11.4700 x 10°
Equation Set 7.2880 74.5808 —-11.4502 x 10°
) Inverse 0.22743 x 10° 172,645 8.156
Error 0.01105x 10° 3.208 8.764 0.2880 0.4102 0.0198 x 10°
) Patched Conic 0.25000 x 10° 96.910 10.398 7.0000 66.0000 —11.4700 x 10°
Equation Set 7.5783 66.4860 ~11.4421 x 10°
- Inverse 0.24877 x 10° 99.062 13.242
) Error 0.00328 x 10° 0.848 2.844 0.6783 0.5140 0.0279 x 10°
' Patched Conic 0.22462 x 10° 23.318 26.585 7.0000 5§7.0000 ~11.4700 x 10°
- Equation Set 7.1256 56.7654 —11.4543 x 10°
inverse 0.22243 x 10° 22.500 26.700
l - Error 0.00219 x 10° 0.726 1.115 0.1255 0.2348 0.0157 x 10°
- Patched Conic 0.17428 x 10° 119.456 71.805 14.0000 72.0000 -11.4700 x 10°
Equation Set 14.2812 71.8253 —11.4525 x 10°
B Inverse No inverse
‘ Ervor 0.2812 0.1747 0.0175 x 10°
Patched Conic 0.19028 x 10° 98.847 58.614 14.0000 68.0000 —11.4700 x 10°
Equation Set 13.9309 87.71128 —-11.4592 x 10°
[ Inverse 0.19099 x 10° 96.920 57.802
Error 0.00071 x 10° 0.073 0.812 0.0891 0.2872 0.0108 x 10°
Patched Conic 0.17668 x 10° 67.089 85.908 14.0000 64.5000 ~11.4700 x 10°
l: Equation Set 14.0789 64.4401 -11.4842 x 10°
inverse No inverse
Ervor 0.0769 0.0509 0.0088 x 10°
E Patched Conic 0.10844 x 10° 92.149 180.000 €.7800 72.3870 ~11.4700 x 10°
Equation Set 6.8287 72.8071 -11.4881 x 10°
Inverse 0.10882 x 10° 83.183 150.538
Error 0.00038 x 10° 1.014 0.482 0.0767 0.4201 0.0181 x 10°
['L Patched Conle 0.10973 x 10° 127429 180.000 £.0000 75.9870 —11.4700 x 10°
Equstion Set 8.7879 76.5792 -11.4977 x 10°
. inverse 0.10083 x 10° 127212 181.570
( Error 0.00010 x 10° 0.283 1.570 0.3 08222 0.0277 x 10°
Patched Conle 0.10817 x 10° 18.708 100.000 4.0000 08.5520 ~11.4700 x 10°
Equation Set 3.9028 085798 -11.48907 x 10°
‘ Inverse 0.19823 x 10° 16.930 101.202
Ervor ©.00008 x 10° 1134 1.202 0.0074 03278 0.0197 x 10°
( AVG 0.1877 0.372¢ 0.0183 x 10°
[}




§

£ —y st §
.

et by

-

—

TABLE C-IX

SUMMARY OF ERRORS FOR TRANSLUNAR TRAJECTORIES USING THE
PARABOLIC APPROXIMATION TO ANGULAR MOMENTUM

NO. ERRORS
coll:m:'?cl:-us OF ggl',“; LAT. | LONG. [ GEO. ENERGY
RUNS DEG. | DLG. FT?/SEC?
Hpg = 100 N. ML, 12 H .
AVG. | 0.1213| 0.0800 | 0.0110 x 10
Hpg = 60 N. MI.
Eg = —8.17 x 10%-FT2/SEC? ¢
MOON AT APOGEE MAX. | 0.1858| 0.1126 | 0.0148 x 10
Hpg = 100 N. M. 9 H .
AVG. | 0.1385(0.1023 | 0.0121 x 10
Hpg = 60 N. M.
Eg = —9.30 x 10°FT2/SEC? .
MOON AT MID.DISTANCE MAX. | 0.2199] 0.1716 | 0.019% x 10
Hpg = 100 N. M. 8 H .
AVG. | 0.0398| 0.0279 | 0.0064 x 10
HPS =60 N. MI.
Eg = -2.8 x 10°FT?/SEC? .
MOON AT APOGEE MAX. | 0.0658] 0.0357 | 0.0083 x 10
Hpg ™ 10,060 N. MI. 6 H s
AVG. | 0.2424| 0.2884 | 0.0268 x 10
Hpg = 60 N. MI.
Eg =—8.17 x 10° FT?/SEC?
E N AT :POGEE MAX. | 0.4081] 0.4894 | 0.0520 x 10°
Hpg = 100 N. M. 10 H
AVG. | 05691 0.5682 | 0.0700 x 10°
Hpg = 10,000 N. M.
Eg = —8.17 x 10°FT?/SEC?
N AT APOGEE MAX. | 0.9825| 1.3443 | 0.1892 x 10°
Hpe * 10,000 N. MI. 10 H
PG AVG. | 0.5216| 05100 | 0.0484 x 10°
Hpg = 10,000 N. MI.
Eg = —8.17 x 10° FT3/SEC?
E N AT APOGEE MAX. | 1,0860] 1.1382 | 0.1320 x 10°
Hpg = 100 N. MI. 9 (c]
AVG. | 0.1581] 0.1422 | 0.0193 x 10°
Hn = 00 N. MI.
Eg = —9.30 x 10° FT?/sEC?
AT MID-DISTANCE MAX. | 0.3429| 0.5417 | 0.0070 x 10°
Hpg = 100 N. MI. 12 G
AVG. | 0.1877| 0.3724 | 0.0183 x 10°
"PS'“N'M"O‘ L
Ec = —11.47 x 10°FT?/SEC
E AT PERIGEE MAX. | 0.5783| 0.6541 | 0.0279 x 10°

*H  REFERS TO THE HIGH ENERGY EQUATION SET

G REFERS TO THE GENERAL EQUATION SET

Hpg ™ PERIGEE HEIGHT

Hpg = PERISELENE HEIGHT
Eg ™~ GEOCENTRIC ENERGY






